
Solutions to Math 41 Final Exam — December 8, 2014

1. (10 points) Find all values of ↵ and � such that

Y (t) = At�e�t

for some constant A is a solution of

y00 + ↵y0 + y = e�t.

Solution 1. We vary ↵ and see how � must change accordingly. Note that the characteristic equation
is �2 +↵�+1 = 0. Thus, if � = �1 is to be a root, then we must have ↵ = 2. In this case, � = �1 is
a repeated root, so the solutions to the homogeneous equation take the form e�t and te�t. Therefore,
by the method of undetermined coe�cients, we should guess a particular solution with � = 2:

Y (t) = At2e�t

=) Y 0(t) = �At2e�t + 2Ate�t

=) Y 00(t) = At2e�t � 4Ate�t + 2Ae�t

To verify that such a solution actually exists, we compute

Y 00 + 2Y 0 + Y = 2Ae�t =) A =
1

2
.

On the other hand, if ↵ 6= 2, then � 6= �1 and the homogeneous solutions do not take the form t�e�t

for any �. We should then guess a particular solution with � = 0: Y (t) = Ae�t. Plugging in, we find

Y 00 + ↵Y 0 + Y = (2� ↵)Ae�t =) A =
1

2� ↵
.

Thus, we must have � = 2 if ↵ = 2 and � = 0 if ↵ 6= 2.

Solution 2. We vary � and see which values of ↵ we need. Compute directly:

Y (t) = At�e�t

=) Y 0(t) = �At�e�t + A�t��1e�t

=) Y 00(t) = At�e�t � 2A�t��1e�t +A�(� � 1)t��2e�t

=) e�t = Y 00 + ↵Y 0 + Y = A�(� � 1)t��2e�t +A(↵� 2)�t��1e�t +A(2� ↵)t�e�t.

Matching terms, we find that we need � = 0, 1, or 2. If � = 0, then we have

A(2� ↵) = 1 =) A =
1

2� ↵
, ↵ 6= 2.

If � = 1, then

A(↵� 2) +A(2� ↵)t = 1 =)
⇢

A(↵� 2) = 1
A(↵� 2) = 0

�
=) no solution.

If � = 2, then

2A+ 2A(↵� 2)t+A(2� ↵)t2 = 1 =)

8
<

:

2A = 1
2A(↵� 2) = 0
A(↵� 2) = 0

9
=

; =) A =
1

2
, ↵ = 2.

Thus, we must have ↵ 6= 2 if � = 0 and ↵ = 2 if � = 2.
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2. Consider the linear di↵erential equation

ty00 + ty0 � y = 0, t > 0.

(a) (2 points) Show that y(t) = t is a solution.

We simply compute that if y = t, then

ty00 + ty0 � y = t · 0 + t · 1� t = t� t = 0.

(b) (4 points) Abel’s theorem states that the Wronskian of two solutions of the second-order equation

y00 + p(t)y0 + q(t)y = 0

is given by

W (t) = c exp


�
Z

p(t) dt

�

for some constant c. Use this to compute the Wronskian for the equation above.

We rewrite the equation as

y00 + y0 � 1

t
y = 0.

Then we must have p(t) = 1, so
R
p(t) dt = t (any antiderivative will work) and

W (t) = c exp


�
Z

p(t) dt

�
= ce�t.

We provide a derivation of Abel’s theorem for completeness. From the definition, if y1, y2 are two solutions to the

di↵erential equation, then we have

W = y1y
0
2 � y0

1y2,

so by the product rule,

W 0
= y0

1y
0
2 + y1y

00
2 � y0

1y
0
2 � y00

1 y2 = y1y
00
2 � y00

1 y2.

Using the fact that y1, y2 satisfy y00
= �p(t)y0 � q(t)y, we get

W 0
= y1(�py0

2 � qy2)� (�py0
1 � qy1)y2 = �py1y

0
2 + py0

1y2 = �pW.

In other words, W (t) satisfies W 0
(t) = �p(t)W (t); solving this gives the formula in Abel’s theorem.
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(c) (6 points) Use the Wronskian from (b) to determine a second linearly independent solution. You
may leave all integrals unsimplified. Hint: The Wronskian of two solutions y1(t) and y2(t) is

W (t) =

����
y1(t) y2(t)
y01(t) y02(t)

���� .

Solution 1. We compute from the formula with y1 = t that

ce�t = W (t) =


t y2
1 y02

�
= ty02 � y2.

For linear independence, we need c 6= 0; choose c = 1. Then we have a linear equation in y2:

y02 �
1

t
y2 =

e�t

t
.

Computing the integrating factor,

µ(t) = exp

✓
�
Z

dt

t

◆
= exp(� ln t) =

1

t
,

we have
✓
1

t
y2

◆0
=

1

t
y02 �

1

t2
y2 =

e�t

t2
=) y2 = t

Z
e�t

t2
dt.

Solution 2. Alternatively, we could finish from e�t = ty02 � y2 by noting that ty02 � y2 = �ty002
since y2 satisfies the given di↵erential equation, giving that

y002 = �e�t

t
=) y2 = �

Z
t

✓Z
s e�u

u
du

◆
ds.

We can verify that both of these formulas are equivalent and do indeed work:

y0
2 =

Z
e�t

t2
dt+

e�t

t
=) y00

2 =

e�t

t2
� e�t

t2
� e�t

t
= �e�t

t

as expected, so

ty00
2 + ty0

2 � y2 = �e�t
+ t

Z
e�t

t2
dt+ e�t � t

Z
e�t

t2
dt = 0,

as desired.
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3. (9 points) Suppose that a di↵erential equation

M(x, y) dx+N(x, y) dy = 0

can be made exact through multiplying by an integrating factor µ(x, y) = µ(z) for some di↵erentiable
function z = f(x, y). Prove that µ satisfies

µ0(z) =

✓
M

y

�N
x

Nf
x

�Mf
y

◆
µ(z).

In order for µ(z) to be an integrating factor, it has to satisfy

(µ(z)M(x, y))
y

= (µ(z)N(x, y))
x

µ(z)
y

M(x, y) + µ(z)M
y

(x, y) = µ(z)
x

N(x, y) + µ(z)N
x

(x, y)

Note that by the chain rule, we can find µ(z)
x

and µ(z)
y

:

µ(z)
x

=
@µ(z)

@z

@z

@x
= µ0(z)f

x

µ(z)
y

=
@µ(z)

@z

@z

@y
= µ0(z)f

y

By substitution, we obtain

µ0(z) f
y

M + µ(z)M
y

= µ0(z) f
x

N + µ(z)N
x

µ0(z)(Nf
x

�Mf
y

) = µ(z)(M
y

�N
x

)

µ0(z) =

✓
M

y

�N
x

Nf
x

�Mf
y

◆
µ(z)
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4. (a) (5 points) Find the Laplace transform of the piecewise continuous function

f(t) =

(
t, 0 < t  1,

e�t, 1 < t.

By definition,

L{f(t)}(s) =
Z 1

0
e�stf(t) dt =

Z 1

0
te�st dt+

Z 1

1
e�(s+1)t dt.

The first integral can be computed by parts:

Z 1

0
te�st dt = � te�st

s
� e�st

s2

����
1

0

= �e�s

s
� e�s

s2
+

1

s2
, s > 0,

while the second integral is just

Z 1

1
e�(s+1)t dt = �e�(s+1)t

s+ 1

�����

1

1

=
e�(s+1)

s+ 1
, s > �1.

Therefore,

L{f(t)}(s) = �e�s

s
+

e�(s+1)

s+ 1
+

1

s2
� e�s

s2
, 0 6= s > �1.

(b) (5 points) Show that

L�1

⇢
s

(s2 + 1)2

�
=

1

2
t sin t.

Let f(t) = sin t. Then

L
⇢
1

2
t sin t

�
(s) =

1

2
L{tf(t)}(s) = �1

2
L{f(t)}0(s) = �1

2

d

ds

✓
1

s2 + 1

◆
=

s

(s2 + 1)2
.

(c) (5 points) Calculate the inverse Laplace transform

L�1

⇢
s2

(s2 + 1)2

�
.

You may use the result from (b) without justification.

Let f(t) = (1/2)t sin t. Then

L{f 0(t)}(s) = sL{f(t)}(s)� f(0) =
s2

(s2 + 1)2
,

so the inverse Laplace transform is just

f 0(t) =
1

2

d

dt
(t sin t) =

1

2
(t cos t+ sin t).
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5. (12 points) Solve the initial value problem

y(4) � 16y = 0, y(0) = 1, y0(0) = 1, y00(0) = �2, y000(0) = 0.

Solution 1. Find the characteristic equation by substituting y = e�t:

0 = �4 � 16 = (�2 + 4)(�2 � 4) = (�+ 2)(�� 2)(�2 + 4),

which has roots � = ±2,±2i. Hence, the general solution is

y(t) = Ae2t + Be�2t + C cos(2t) + D sin(2t)
=) y0(t) = 2Ae2t � 2Be�2t � 2C sin(2t) + 2D cos(2t)
=) y00(t) = 4Ae2t + 4Be�2t � 4C cos(2t)� 4D sin(2t)
=) y000(t) = 8Ae2t � 8Be�2t + 8C sin(2t)� 8D cos(2t)

for constants A,B,C,D. It remains to match the initial conditions:

1 = y(0) = A+ B + C
1 = y0(0) = 2A� 2B + 2D

�2 = y00(0) = 4A+ 4B � 4C
0 = y000(0) = 8A� 8B � 8D

9
>>=

>>;
=) A =

1

4
, B = 0, C =

3

4
, D =

1

4
.

Note. Strictly speaking, we introduced this technique only for second-order equations, but the principle is clearly the

same. We can also come to the same conclusion using only second-order methods by writing

0 =

✓
d4

dt4
� 16

◆
y =

✓
d2

dt2
+ 4

◆✓
d2

dt2
� 4

◆
y

| {z }
z

= 0 =)
(
z00 + 4z = 0

y00 � 4y = z

and solving for z(t) then for y(t).

Solution 2. Let Y (s) = L{y}(s) and take the Laplace transform:

(s4 � 16)Y (s) = s3y(0) + s2y0(0) + sy00(0) + y000(0)

(s2 + 4)(s2 � 4)Y (s) = s3 + s2 � 2s

(s+ 2)(s� 2)(s2 + 4)Y (s) = s(s+ 2)(s� 1),

so

Y (s) =
s(s� 1)

(s� 2)(s2 + 4)
=

A

s� 2
+

Bs+ 2C

s2 + 4
=

A(s2 + 4) + (Bs+ 2C)(s� 2)

(s� 2)(s2 + 4)

for constants A,B,C, i.e.,

1 = A+ B
�1 = � 2B + 2C
0 = 4A � 4C

9
=

; =) A =
1

4
, B =

3

4
, C =

1

4

on matching coe�cients. Thus,

y(t) = L�1{Y (s)} =
1

4
L�1

⇢
1

s� 2

�
+

3

4
L�1

⇢
s

s2 + 4

�
+

1

4
L�1

⇢
2

s2 + 4

�

=
1

4
e2t +

3

4
cos(2t) +

1

4
sin(2t).
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6. Consider the autonomous nonlinear system

x0 = 2xy,

y0 = ex � y2.

(a) (3 points) Find all critical points (equilibrium solutions).

At equilibrium, x0 = y0 = 0. To set x0 = 0, we need either x = 0 or y = 0. If x = 0, then
0 = y0 = 1 � y2 gives y = ±1, so (0,±1) are equilibria. On the other hand, if y = 0, then we
require 0 = y0 = ex, which has no solution. Therefore, (0,±1) are the only equilibria.

(b) (3 points) Determine the type and stability of each critical point.

Compute the Jacobian:

J(x, y) =


2y 2x
ex �2y

�
=) J(0, 1) =


2 0
1 �2

�
, J(0,�1) =


�2 0
1 2

�
.

The Jacobians at both equilibria have eigenvalues �1,2 = ±2 and so are (unstable) saddle points.

(c) (4 points) Draw a phase portrait around each critical point.

Compute eigenvalue/eigenvector pairs:

(0,+1) : �1 = 2, v1 =


4
1

�
, �2 = �2, v2 =


0
1

�

(0,�1) : �1 = 2, v1 =


0
1

�
, �2 = �2, v2 =


4
�1

�

Use this information to guide nearby trajectories: around (0, 1), solutions converge to the equi-
librium along (0, 1)T and diverge along (4, 1)T; similarly, around (0,�1), solutions converge along
(4,�1)T and diverge along (0, 1)T. A combined phase portrait is given on the next page.

Haizhao
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(d) (5 points) Find the equations of all solution curves.

Reduce the autonomous system to a first-order equation:

dy

dx
=

dy/dt

dx/dt
=

ex � y2

2xy
=) (y2 � ex) dx+ 2xy dy = 0,

which is exact and has the solution

H(x, y) = xy2 � ex = const.
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7. (15 points) Find the general solution of the inhomogeneous linear di↵erential equation

y00 + y = sec t.

For this problem, we can only apply variation of parameters. To do this, we need to find a fundamental
set of solutions to the equation

y00 + y = 0.

By solving the characteristic equation �2 + 1 = 0, we get � = ±i, and hence a fundamental set of
solutions is

y1(t) = cos t, y2(t) = sin t.

One can also compute the Wronskian of {y1, y2} by

W [y1, y2](t) = det

✓
y1 y2
y01 y02

◆
= det

✓
cos t sin t
� sin t cos t

◆
= 1.

Then a particular solution is given by

y
p

(t) = y1(t)

Z �y2(t) sec t

W [y1, y2](t)
dt+ y2(t)

Z
y1(t) sec t

W [y1, y2](t)
dt

= cos t

Z
(� sin t)

1

cos t
dt+ sin t

Z
cos t

1

cos t
dt

= cos t ln | cos t|+ t sin t.

(If this looks unfamiliar, write down the corresponding first-order system in (y, y0)T and work through
the variation of parameters formula in that setting.) The general solution is then

y(t) = y
p

(t) + c1y1(t) + c2y2(t) = cos t ln | cos t|+ t sin t+ c1 cos t+ c2 sin t

for constants c1 and c2.
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8. Consider the nonlinear initial value problem

t

2
y0 + y �p

y = 0, y(1) = 0.

(a) (2 points) Find a solution by inspection.

Clearly y ⌘ 0 is a solution.

(b) (6 points) Use the change of variables y(t) = [u(t)]2 to find a second solution.

By plugging in y = u2, we have

t

2
· 2uu0 + u2 �

p
u2 = 0, i.e., tuu0 + u2 � |u| = 0.

So our new equation is

(
tuu0 + u2 � u = 0, u � 0

tuu0 + u2 + u = 0, u < 0
=)

(
tu0 + u� 1 = 0, u � 0

tu0 + u+ 1 = 0, u < 0

since we want to find some solution other than u ⌘ 0. Notice that if u(t) is a solution to the
first equation above, then �u(t) is a solution to the second one; furthermore, both give the same
result for y(t) = [u(t)]2. Thus, we only need to solve, say,

tu0 + u� 1 = 0, u � 0,

which has the solution

u(t) = 1� 1

t
, t < 0, t � 1

on using the initial condition u(1) =
p

y(1) = 0. In order to get a second solution for y(t), we
can therefore take

y(t) =

(
0, t < 1,

(1� 1/t)2, t � 1.

This is a di↵erentiable function on all of R satisfying the original initial value problem since both
parts are solutions.

(c) (4 points) Why does this not contradict the theorem on the existence of a unique solution?

This does not contradict the uniqueness theorem, since if we denote

f(t, y) =
2

t
(
p
y � y),

then the partial derivative f
y

is given by

f
y

=
1

t

✓
1
p
y
� 2

◆
,

which is not continuous around (t, y) = (1, 0).


