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Problem Statement
Existing Methods

Main Question How to analyze a typical time signal which can be
viewed as a superposition of several simple components?

Application

In many applications,for examples, engeneering, medicine, and
finance, time signals are decomposed into several simple
components to characterize the structure, to make prediction and to
identify determinant components.

Character
1 Time signals are often nonlinear, generated from dynamical

systems obeying nonlinear equations
2 Time signals would be non-stationary in the sense that there may

be jumps or changes with important significance
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Time-Frequency Analysis

Time-frequency analysis study a signal in both the time and frequency
domains simultaneously via a certain time-frequency transform.

Linear methods: efficient, easy for reconstruction, but poor
resolution
Quadratic methods: better resolution, but higher computational
cost, more difficult to reconstruct and non-physical interference
between multiple components

Synchrosqueezing for better Time-Frequency Analysis

To address the resolution limitation of linear time-frequency analysis,
Daubechies et al propose the synchrosqueezing technique for a
sharpened time-frequency representation, the synchrosqueezed
wavelet transforms.
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Empirical mode decomposition

The EMD method proposed and improved by Huang et al uses a
sifting process to break down a signal into a summation of
intrinsic mode functions (IMF), which induce stability problems in
the presence of noise.
A new method named EEMD is aimed to deal with these issues,
but is difficult to analyze mathematically.

Data-driven mode decomposition via compressive sensing

Inspired by the EMD, Hou et al propose a data-driven mode
decomposition method via compressive sensing.

Adaptive data-driven method without predetermined basis
functions
Sparsest mode decomposition via proper optimization
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Motivation

Mode decomposition methods for higher dimensional time
signals have important applications in engineering. However,
useful tools for higher dimensional mode decomposition are still
under development.
Higher dimensional EEMD, which applies 1D EEMD on each
dimension and adopts a certain well defined combination
technique afterward to get a higher dimensional decomposition,
is proposed by Huang et al recently.
Higher dimensional mode decomposition method based on
time-frequency analysis is still an open problem. In this talk, we
introduce one by generalizing the essential idea, the
synchrosqueezing technique in Daubechies’ paper, and
sellecting appropriate time-frequency representation.
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Wave packet instead of wavelet

In high dimension, time-frequency representation should be able to
distinguish waves with different frequency vectors.
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Figure: Consider the superposition of two plane waves e2πip·x and e2πiq·x with
the same frequency (|p| = |q|) but different wave numbers (p 6= q).
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Definition 1: Wave Packets

Given the mother wave packet w(x) and s ∈ (1/2, 1), the family of wave
packets {wpb(x), p, b ∈ R2} is defined as

wpb(x) = |p|sw(|p|s(x − b))e2πi(x−b)·p,

or equivalently in Fourier domain

ŵpb(ξ) = |p|−se−2πib·ξŵ(|p|−s(ξ − p)).

Definition 2: Wave Packet Transform

The wave packet transform of a function f (x) is a function of p, b ∈ R2

Wf (p, b) = 〈wpb, f 〉 =
∫

wpb(x)f (x)dx

= 〈ŵpb, f̂ 〉 =
∫

ŵpb(ξ)f̂ (ξ)dξ
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As a simple example, let us consider the wave packet transform for a
plane wave function

f (x) = αe2πiNβ·x ,

where α and β are non-zero constants of order O(1) and N is a
sufficiently large constant. The instantaneous wavevector is Nβ and
we have

Wf (p,b) =

∫
R2
αe2πiNβ·x |p|sw(|p|s(x − b))e−2πi(x−b)·pdx

= |p|−sα

∫
R2

e2πiNβ·(b+|p|−sy)w(y)e−2πip|p|−sy dy

= |p|−sαe2πiNβ·bŵ(|p|−s(Nβ − p)).

Remark: Since ŵ(ξ) is compactly supported in the unit ball, for each
fixed b the coefficients Wf (p,b) are non-zero if p satisfies

|p − Nβ| ≤ |p|s.
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The derivative of Wf (p,b) with respect to b and Wf (p,b) satisfy the
following equation:

∇bWf (p,b)

2πiWf (p,b)
=

2πiNβ|p|−sαe2πiNβ·bŵ(|p|−s(Nβ − p))

2πi |p|−sαe2πiNβ·bŵ(|p|−s(Nβ − p))
= Nβ

for Wf (p,b) 6= 0.

This motivates us to define the instantaneous wavevector estimation
for a general function f (x) as follows.

Definition 3: Instantaneous Wavevector Estimation

The instantaneous wavevector estimation of a function f (x) at (p,b) is

vf (p,b) =
∇bWf (p,b)

2πiWf (p,b)

for p,b ∈ R2 such that Wf (p,b) 6= 0.
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Given the wavevector estimation vf (p,b), the synchrosqueezing step
reallocates the information in the phase space and provides a
sharpened phase space representation of f (x).

Definition 4: Synchrosqueezed Energy Distribution

Given f (x), for v ,b ∈ R2, Wf (p,b), and vf (p,b), the synchrosqueezed
energy distribution Tf (v ,b) is

Tf (v ,b) =

∫
|Wf (p,b)|2δ(vf (p,b)− v)dp.

Remark:
If vf approximate the instantaneous wavevector accurately, the
synchrosqueezed energy is nonzeros at v when the signal
contains an instantaneous wavevector v .
Nonzero Wf has a spreading of width O(|p|s) around the
instantaneous wavevector, which is worse in the sense of
resolution.
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Figure: Synchrosqueezed wave packet transform applied to a deformed
plane wave f (x) = α(x)e2πiNφ(x). Left: The essential support of the wave
packet transform Wf (p, b) at a fixed b1 value. Right: The essential support of
the synchrosqueezed energy distribution Tf (v , b) at the same b1 value. The
essential support of Wf (p, b) has been reallocated to form a sharp phase
space representation Tf (v , b).
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An imformal example for mode decomposition

Let
f (x) = e2πiNφ1(x) + e2πiNφ2(x),

with smooth phases Nφ1(x) and Nφ2(x) for sufficiently large N. Let
us assume that N∇φ1(x) and N∇φ2(x) are well-separated from each
other.
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The essential support of Tf (v ,b) separates into two disjoint
regions U1 and U2, which can be identified with standard
clustering algorithms
Once U1 and U2 are identified, we can extract individual modes
with

f1(x) =

∫
vf (p,b)∈U1

w̃pb(x)Wf (p,b)dpdb,

f2(x) =

∫
vf (p,b)∈U2

w̃pb(x)Wf (p,b)dpdb

where the set of functions {w̃pb(x),p,b ∈ R2} is a dual frame of
{wpb(x),p,b ∈ R2} .
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Analysis of the Transform

Key analysis: How well does the instantaneious wavevector
estimation work?
In this subsection we show that, for a superposition of multiple
components with well-separated instantaneous wavevectors, the
synchrosqueezed wave packet transform is able to estimate these
instantaneous wavevectors.

Definition 5: Intrinsic Mode Function

A function f (x) = α(x)e2πiNφ(x) is an intrinsic mode function of type
(M,N) if α(x) and φ(x) satisfy

α(x) ∈ C∞, |∇α| ≤ M, 1/M ≤ α ≤ M

φ(x) ∈ C∞, 1/M ≤ |∇φ| ≤ M, |∇2φ| ≤ M.
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Definition 6: Well-Separated Superposition

A function f (x) is a well-separated superposition of type (M,N,K ) if

f (x) =
K∑

k=1

fk (x)

where each fk (x) = αk (x)e2πiNφk (x) is an intrinsic mode function of
type (M,N) and they satisfy the separation condition

|N∇φk (b)− N∇φl (b)| ≥ 21+s(|N∇φk (b)|s + |N∇φl (b)|s)

for any 1 ≤ k , l ≤ K . We denote by F (M,N,K ) the set of all such
functions.
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Theorem

For a function f (x) and ε > 0, we define

Rf ,ε = {(p,b) : |Wf (p,b)| ≥ |p|−s√ε}

and
Zf ,k = {(p,b) : |p − N∇φk (b)| ≤ |p|s}

for 1 ≤ k ≤ K . For fixed M and K , there exists a constant
ε0(M,K ) > 0 such that for any ε ∈ (0, ε0) there exists a constant
N0(M,K , ε) > 0 such that for any N > N0(M,K , ε) and
f (x) ∈ F (M,N,K ) the following statements hold.

(i) {Zf ,k : 1 ≤ k ≤ K} are disjoint and Rf ,ε ⊂
⋃

1≤k≤K Zf ,k ;
(ii) For any (p,b) ∈ Rf ,ε ∩ Zf ,k ,

|vf (p,b)− N∇φk (b)|
|N∇φk (b)|

.
√
ε.
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Outline of the algorithm

For a given superposition f (x) of several well-separated components,
the synchrosqueezed wave packet transform consists of the following
steps:

1 Apply the wave packet transform to obtain Wf (p,b) and the
gradient ∇bWf (p,b);

2 Compute the approximate instantaneous wavevector vf (p,b) and
perform synchrosqueezing to get Tf (v ,b);

3 Use a clustering algorithm to identify the support of the new
phase space representation Tf (v ,b) of different intrinsic mode
functions;

4 Reconstruct each intrinsic mode function using the dual frame.
We will describe in detail the discrete synchrosqueezed wave packet
transform.
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For simplicity, we consider functions that are periodic over the unit
square [0,1)2 in 2D. Let

X = {(n1/L,n2/L) : 0 ≤ n1,n2, < L,n1,n2 ∈ Z}

be the L× L spatial grid at which these functions are sampled. The
corresponding L× L Fourier grid is

Ξ = {(ξ1, ξ2) : −L/2 ≤ ξ1, ξ2 < L/2, ξ1, ξ2 ∈ Z}.

We simply discretize the position space with an LB × LB uniform grid:

B = {(n1/LB,n2/LB) : 0 ≤ n1,n2 < LB,n1,n2 ∈ Z}.

For each fixed p ∈ P and b ∈ B, the discrete wave packet is defined
through its Fourier transform as

ŵpb(ξ) =
1
Lp

e−2πib·ξgp(ξ)

for ξ ∈ Ξ, where gp is a carefully defined function.
Haizhao Yang, Lexing Ying Synchrosqueezed wave packet transform for 2D mode decomposition



Introduction
2D Synchrosqueezed Wave Packet Transform

Implementation of the Transform and Mode Decomposition
Numerical Resutls

Conclusion and Future Work

Outline of the algorithm
Discrete Wave Packet Transform and Its Inverse Transform
Clustering with Synchrosqueezed Energy Distribution

For a function f (x) defined on x ∈ X , the discrete wave packet
transform is a map from `2(X ) to `2(P × B), defined by

Wf (p,b) = 〈wpb, f 〉 = 〈ŵpb, f̂ 〉 =
1
Lp

∑
ξ∈Ξ

e2πib·ξgp(ξ)f̂ (ξ).

Algorithm: Fast Forward transform from f (x) to Wf (p,b)

1: Compute f̂ (ξ) with ξ ∈ Ξ from f (x) with x ∈ X using an L× L
forward FFT.

2: for each p ∈ P do
3: Form gp(ξ)f̂ (ξ) on the support of gp(ξ)
4: Wrap the result modulo LB onto the domain [−LB/2,LB/2)2

5: Apply an LB × LB inverse FFT to the wrapped result
6: Multiple the result by LB/Lp to get Wf (p,b) for all b ∈ B
7: end for
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For a function h(p,b) in `2(P × B), the transpose of the wave packet
transform is given by

W t
h(x) :=

∑
p∈P,b∈B

h(p,b)wpb(x)(Lp/LB)2.

Algorithm: Fast Transpose Operator from h(p,b) to W t
h(x)

1: for each p ∈ P do
2: Multiply h(p,b) for each b ∈ B by Lp/LB
3: Apply an LB × LB forward FFT to the product
4: Unwrap the result modulo LB onto the support of gp(ξ)
5: Multiply the unwrapped data with gp(ξ) and add the product to

get f̂ (ξ)
6: end for
7: Compute f (x) with x ∈ X from f̂ (ξ) with ξ ∈ Ξ using an L× L

inverse FFT.
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We define the discrete gradient ∇bWf (p,b) in a similar way

∇bWf (p,b) = ∇b〈ŵpb, f̂ 〉 =
∑
ξ∈Ξ

1
Lp

2πiξe2πib·ξgp(ξ)f̂ (ξ).

Algorithm: Discrete Gradient Operator from f (x) to ∇bWf (p,b)

1: Compute f̂ (ξ) with ξ ∈ Ξ from f (x) with x ∈ X using an L× L
forward FFT.

2: for each p ∈ P do
3: Form 2πiξgp(ξ)f̂ (ξ) on the support of gp(ξ)
4: Wrap the result modulo LB onto the domain [−LB/2,LB/2)2

5: Apply an LB × LB inverse FFT to each component of the
wrapped result

6: Multiple the result by LB/Lp to get ∇bWf (p,b) for all b ∈ B
7: end for

Haizhao Yang, Lexing Ying Synchrosqueezed wave packet transform for 2D mode decomposition



Introduction
2D Synchrosqueezed Wave Packet Transform

Implementation of the Transform and Mode Decomposition
Numerical Resutls

Conclusion and Future Work

Outline of the algorithm
Discrete Wave Packet Transform and Its Inverse Transform
Clustering with Synchrosqueezed Energy Distribution

To specify the synchrosqueezed energy distribution Tf (v ,b), we first
place in the Fourier domain a two dimensional Cartesian grid of
stepsize ∆:

V = {(n1∆,n2∆) : n1,n2 ∈ Z}.

At each v = (n1∆,n2∆) ∈ V , we associate a cell Dv centered at v

Dv =

[
(n1 −

1
2

)∆, (n1 +
1
2

)∆

)
×
[

(n2 −
1
2

)∆, (n2 +
1
2

)∆

)
.

Then the discrete synchrosqueezed energy distribution is defined as

Tf (v ,b) =
∑

(p,b):vf (p,b)∈Dv

|Wf (p,b)|2 · (Lp/LB)2.

After synchrosqueezing, Tf (v ,b) is essentially supported in the phase
space near the K “discrete” surfaces {(Nφk (b),b),b ∈ B}. The next
step is to decompose the essential support of Tf (v ,b) into K clusters,
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Algorithm: General Spectral Clustering on set S = s1, . . . , sn

1: Construct the matrix A = (αij )ij ∈ Rn×n with distance function
αij = exp(−|si − sj |2/σ2) if i 6= j , and αii = 0, ∀i . Here σ is an
input parameter.

2: Let D to be a diagonal matrix such that Dii =
∑n

j=1 αij and define
the Laplacian-type matrix L = D−

1
2 AD−

1
2 .

3: Choose the K largest orthogonal eigenvectors of L, say v1,. . .,vK ,
and stack them horizontally to get the matrix
V = [v1, v2, . . . , vK ] ∈ Rn×K . The entries of V are denoted by vij .

4: Define the matrix M = (mij ) with mij = vij/(
∑

j v2
ij )1/2, which

means normalizing the rows of V .
5: Consider each row of M as a point in RK and then partition these

n points into K clusters with the K -means algorithm.
6: If row i of M is assigned to cluster j , then assign the original point

si to cluster j .
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In the current setting, we choose a threshold parameter η > 0,
define the set S to be

{(v ,b) : v ∈ V ,b ∈ B,Tf (v ,b) ≥ η},

and apply the above algorithm to S. The resulting clusters are
defined to be U1, . . . ,UK .
In the final step, we recover each intrinsic mode function by
computing.

fk (x) =
∑

(p,b):vf (p,b)∈Uk

Wf (p,b)wpb(x)(Lp/LB)2.

This step can be carried out efficiently by restricting Wf (p,b) to
the set {(p,b) : vf (p,b) ∈ Uk} and applying transpose operator
to the restriction for each k .
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Instantaneous wavevecter extraction

We test the accuracy of the estimated instantaneous wavevector
vf (p,b). Let f (x) be a deformed plane wave

f (x) = α(x)e2πiNφ(x).

The estimate vf (p,b) should approximates N∇φ(b). We define the
mean estimated instantaneous frequency

vm
f (b) =

∑
p |Wf (p,b)|2vf (p,b)∑

p |Wf (p,b)|2

We can define the relative error R(b) between vm
f (b) and the exact

instantaneous frequency N∇φ(b) as

R(b) =
|vm

f (b)− N∇φ(b)|
|N∇φ(b)|

.
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Error of instantaneous wavevector extraction

Example 1. We perform this test on f (x) with α(x) = 1,
φ(x) = φ(x1, x2) = x1 + x2 + 0.1 sin(2πx1) + 0.1 sin(2πx2), and
N = 135. R(b) is of order 10−2, which agrees with theorem on that
the relative approximation error is of order O(

√
ε).

b
1

b
2

Relative error R(b)
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Noiseless Signal of Two Deformed Plane Waves

Example 2. Here f (x) is a sum of two deformed plane waves

f (x) = e2πiNφ1(x) + e2πiNφ2(x)

φ1(x) = φ1(x1, x2) = x1 + x2 + β sin(2πx1) + β sin(2πx2)

φ2(x) = φ2(x1, x2) = −x1 + x2 − β sin(2πx1) + β sin(2πx2)

with N = 135 and β = 0.1.
We applied synchrosqueezed wave package transform on f and use
spectral clustering method to extract each component.
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Sum of two deformed plane waves
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Two Recovered Components

x
1

x
2

recovered first component
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Noicy Signal of Two Deformed Plane Waves

The proposed synchrosqueezed wave packet transform is also rather
robust to noise. To demonstrate this, let f (x) be the superposition of
two deformed plane waves and a noise term

f (x) = e2πiNφ1(x) + e2πiNφ2(x) + n(x),

where n(x) is an isotropic complex Gaussian random noise with zero
mean and variance σ2 = 0.5. In order to reduce the influence of
noise, we set up a threshold parameter δ ≈ 3σ2 and keep only the
values of Tf (v ,b) that are greater than δ.

Haizhao Yang, Lexing Ying Synchrosqueezed wave packet transform for 2D mode decomposition



Introduction
2D Synchrosqueezed Wave Packet Transform

Implementation of the Transform and Mode Decomposition
Numerical Resutls

Conclusion and Future Work

x
1

x
2

Sum of two deformed plane waves with noise

 

 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−3

−2

−1

0

1

2

3

−200

0

200

0

0.5

1

−200

−100

0

100

200

v
1

Essential support of synchrosqueezed energy distribution
of two deformed plane waves at a fixed b

1
 value

b
2

v
2

−200

0

200

0

0.5

1

−200

−100

0

100

200

v
1

Essential support of synchrosqueezed energy distribution
of first deformed plane wave at a fixed b

1
 value

b
2

v
2

−200

0

200

0

0.5

1

−200

−100

0

100

200

v
1

Essential support of synchrosqueezed energy distribution
of second deformed plane wave at a fixed b

1
 value

b
2

v
2

Haizhao Yang, Lexing Ying Synchrosqueezed wave packet transform for 2D mode decomposition



Introduction
2D Synchrosqueezed Wave Packet Transform

Implementation of the Transform and Mode Decomposition
Numerical Resutls

Conclusion and Future Work

Two Recovered Components from Noicy Data
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Signal of Incompleted Deformed Plane Waves

We will show that the synchrosqueezed wave packet transform still
works quite well under this more general setting. Here we choose
f (x) to be the superposition of two components, one of which is
incomplete:

f (x) = χ(x) · e2πiNφ1(x) + e2πiNφ2(x),

φ1(x) = φ1(x1, x2) = −(x1 + β sin(2πx1)) + (x2 + β sin(2πx2)),

φ2(x) = φ2(x1, x2) = (x1 + β sin(2πx1))− (x2 + β sin(2πx2)),

where N = 135, β = 0.1, and χ(x) is an indicator function of an
ellipse in [0,1)2.
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sum of 2 components with incomplete singal
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Conclusion

This method is an initial step for 2D mode decomposition via
time-frequency analysis. Higher dimensional method can be
achieved by applying higher dimensional wave package
transform.
A wide range of well-separated nonlinear wave components can
be extracted accurately with analytic and numerical proof.
Robust against noise and working well on non-stationary data.
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Future Work

The synchrosqueezed wave packet transform has a geometric
scaling parameter s, which is in (1/2,1). One natural question is
whether it is possible to generalize or modify the
synchrosqueezing idea so that it will work for the wave atom
case where s = 1/2.
Curvelet is an optimal tool to represent images with curve
discontinuity and to identify isolated wavefronts. A
synchrosqueezed curvelet transform will have better applications
in some problems.
Robust clustering algorithms are necessary when we generalize
the definition of well-separated IMF such that they can have
intersecting surfaces after synchrosqueezed wave package
transform.
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