Robustness Analysis of Synchrosqueezed Transforms

Haizhao Yang

Department of Mathematics, Stanford University

Collaborators: Ingrid Daubechies*, Jianfeng Lu[#] and Lexing Ying[†]

* Department of Mathematics, Duke University

Department of Mathematics and Chemistry and Physics, Duke University

† Department of Mathematics and ICME, Stanford University

October 2014

Medical study (Yang, ACHA, 14)

A superposition of two ECG signals.

$$f(t) = \alpha_1(t)s_1(2\pi\phi_1(t)) + \alpha_2(t)s_2(2\pi\phi_2(t)).$$

• Spike wave shape functions $s_1(t)$ and $s_2(t)$.

Figure : Complicated wave shape functions.

Figure : Good decomposition.

Geophysics (Yang and Ying, SIIMS 13, SIMA 14)

- ► A superposition of several wave fields.
- Nonlinear components, bounded supports.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure : One target component with structure noise and Gaussian random noise. Courtesy of Fomel and Hu for providing data expames.

Materials science (Yang, Lu and Ying, preprint)

Atomic crystal analysis

- Observation: an assemblage of wave-like components;
- Goal: Crystal segmentation, crystal rotations, crystal defects, crystal deformations.

Art forensics (Yang, Lu, Daubechies, Ying, preprint)

Painting canvas analysis

- Observation: a superposition of wave-like components;
- ► Goal: count threads and estimate texture deformation.

Figure : Top: a X-ray image of canvas. Left: horizontal thread count. Right: horizontal thread angle.

Synchrosqueezed (SS) transforms

wavelets		SS wavelet (SSWT)
wave packets	+SS =	SS wave packet (SSWPT)
general curvelets		SS curvelet (SSCT)

SS for sharpened representation

Figure : CWT, 1D SSWT and 1D SSWPT of the synthetic benchmark signal.

Theory for SS transforms

A non-linear wave s(x) = α(x)e^{2πiφ(x)}, a wavelet or a wave packet w_{ab}(x), define a transform:

$$W_s(a,b) = \langle s(x), w_{ab}(x) \rangle = \int s(x) \overline{w_{ab}(x)} \, \mathrm{d}x.$$

Main results:

1D: Daubechies et al, ACHA 11, Yang, ACHA 14

$$\omega_s(a,b) = \frac{\partial_b W_s(a,b)}{2\pi i W_s(a,b)} \approx \phi'(b)$$

2D: Yang and Ying SIIMS 13 and SIMA 14

$$\omega_{s}(a,b) = \frac{\nabla_{b}W_{s}(a,b)}{2\pi i W_{s}(a,b)} \approx \nabla \phi(b)$$

Synchrosqueezing for sharpened representation:

$$\mathcal{T}_{s}(\omega, b) = \int_{\{a: W_{s}(a, b) \neq 0\}} W_{s}(a, b) \delta(\omega_{s}(a, b) - \omega) \, \mathrm{d}a.$$

Figure : An example of a superposition of two 2D waves using 2D SSWPT.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Difference of wavelets and wave packets

Wavelet $w_{ab}(x)$: the essential support of $\widehat{w_{ab}}(\xi)$ is $\mathcal{O}(a)$.

Figure : In the frequency domain: Wavelet tiling (blue); Sampling bump functions (black); Fourier transforms of plane waves (red).

Wave packets $w_{ab}(x)$: the essential support of $\widehat{w_{ab}}(\xi)$ is $\mathcal{O}(a^s)$ for a fixed $s \in [1/2, 1]$.

Difference of SS wavelets and SS wave packets

Figure : Seismic trace benchmark signal: 1D SSWT; 1D SSWPT s = 0.625; 1D SSWPT s = 0.5. Top: whole domain. Bottom: high frequency part.

Difference of 2D wave packets and 2D general curvelets

イロト イポト イヨト イヨト

Figure : Essential support of the Fourier transform of: continuous wave packets; continuous general curvelets; a discrete general curvelet with parameters (s, t), roughly of size $a^s \times a^t$.

Difference of 2D SSWPT and 2D SSCT

Usually s = t is better than s < t, except for the banded wave-like components.

Figure : Left: A superposition of two banded waves; Middle: 2D SSWPT;Right: 2D SSCT. $< \Box > < \Box > < \Box > < \Box > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > <$

Robustness properties of SSTs

1D SSWT¹²

- Bounded perturbation:
- Gaussian random noise (colored).

1D, 2D SSWPT, SSCT³

- Bounded perturbation;
- Gaussian random noise (colored);
- Possible compactly supported in space;
- Emphasize on how to realize better robustness.

³Yang and L. Ying, arXiv:1410.5939, 14.

¹G. Thakur, E. Brevdo, N.S. Fuckar, and H.-T. Wu, "The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications", Signal Processing, 93(5):1079-1094, 2013

²Y.-C. Chen, M.-Y. Cheng, H.-T. Wu, "Nonparametric and adaptive modeling of dynamic periodicity and trend with heteroscedastic and dependent errors", JRSS(B), 76(3): 651-682, 2014

Robustness properties of SSTs

Smaller scaling parameter *s* in the SSWPT, better robustness.

(日)、

Figure : Noisy synthetic benchmark signal. From left to right: s = 0.625, s = 0.75, and s = 0.875.

Robustness properties of SSTs

Higher redundancy in the time-frequency transform, better robustness.

Figure : 16 times redundancy. From left to right: s = 0.625, s = 0.75, and s = 0.875.

Laughing voice

Figure : From left to right: s = 1 (SSWT); s = 0.75; s = 0.625. Top: whole domain. Bottom: high frequency part.

Volcanic signal tremor

Figure : From left to right: s = 1 (SSWT); s = 0.75; s = 0.625. Top: Normal SST. Bottom: Enhance the energy in the high frequency part.

Microseismic signal

Figure : From left to right: s = 1 (SSWT); s = 0.75; s = 0.625. Top: whole domain. Bottom: low frequency part.

Tohoku mega-earthquake signal

Figure : From left to right: s = 1 (SSWT); s = 0.75; s = 0.625.

・ロト ・ 同ト ・ 日下 ・ 日

э

SynLab: a MATLAB toolbox

- Available at http://web.stanford.edu/~haizhao/Codes.htm.
- ID SS Wave Packet Transform ⁴
- 2D SS Wave Packet/Curvelet Transform ⁵⁶

Applications:

- ► Geophysics: seismic wave field separation and ground-roll removal.
- Atomic crystal image analysis.
- Art forensic.

⁴Synchrosqueezed Wave Packet Transforms and Diffeomorphism Based Spectral Analysis for 1D General Mode Decompositions, Applied and Computational Harmonic Analysis, 2014.

⁵Synchrosqueezed Wave Packet Transform for 2D Mode Decomposition,SIAM Journal on Imaging Science, 2013.

 $^{^6}$ Synchrosqueezed Curvelet Transform for 2D Mode Decomposition, SIAM Journal on Mathematical Analysis, 2014.