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Outline

Multilinear operator in harmonic analysis

Direct computation of multilinear operator

Fast algorithm for multilinear operator
• Fast Fourier transform and non uniform fast Fourier 

transform
• Matrix decomposition
• Matrix approximation



Multilinear Operators
• Definition: For k fixed, we consider the k-linear operator

initially defined for             as follows. We write 

and set                                  If                is a bounded function 
on       , we define multilinear operator M by 

• Here we just talk about the cases when n=1 and k=2. So the 
multilinear operator is

We can get the results for higher n and k similarly.
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Multilinear Operators
• Some examples of M:
(1)                                     when

(2)                                           where H is the Hilbert 
transform, and 
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Direct Computation
• Upon discretization of the multilinear operator, we get 

where 
and

• We want to compute                        for all j. The time 
complexity of direct computation is          . 

• Note that we suppose      and      have support in [0,1] 
and discretize [0,1] with N points                     So
and      take value at the points 
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Fast Fourier transform

 Uniform
 Uniform
 Fourier coeff

 Fourier kernel 

 Compute u(x) for each x in X 

 Order of FFT is 
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Non-uniform fast Fourier transform

 Non-uniform                and
 Non-uniform 

and 
 Fourier coeff
 Fourier kernel 

 Compute u(x) for each x in X 

 The idea of Non-uniform FFT: use 
equispaced data to approximate 
the non-uniform data.

 Order 
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Fast Algorithm for Multilinear Operator

(a) Special case for constant multiplication function
When the multiplier function                   is a constant, then  

where we let                      , and
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Fast Algorithm for Multilinear Operator
 Observation:

(1)          is the convolution of              and        .   

So                                         .

(2)                       is the inverse Fourier transform of          .

 Ideas: Use FFT to compute the Fourier transform above to reduce 
the time complexity, supposing that the data is uniformly distributed. 

 Time complexity for T: 

Time complexity for                                        is                 .

Total time complexity to compute M is                   .

 If the data is non-uniform, then the time complexity is

using NFFT.
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Fast Algorithm for Multilinear Operator
(b) Smooth multiplicative function
 Suppose that               is smooth enough, it has a h-term ε-

expansion about     and      which means there exists functions                   
and                       such that  

 We can use the random method provided by V. Rokhlin, B. Engquist
and L.Ying to get the h-term ε-expansion of it with time complexity           

for a            matrix.
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Fast Algorithm for Multilinear Operator

 Then

 Time complexity is                         for uniform data and 
for non-uniform data for a single matrix of size N.
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Fast Algorithm for Multilinear Operator
(c) P.W. smooth multiplicative function
 If             is discontinuous along a 

curve, we can use matrix division to 
get the small square domains in 
which the function is smooth.

 Number of squares：
• O(N) squares of size 1 by 1
• O(N/2) squares of size 2 by 2
• …
• O(1) squares of size N by N
• Total number of squares is O(N).

 Time complexity of low rank 
approximation:
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Fast Algorithm for Multilinear Operator

 Time complexity for uniform data:

 For non-uniform data, it’s
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Summary of ideas
 Division of matrices according to the discontinuous curve, 

so that the function                 is smooth enough. 
 Use the random method to get the low rank 

approximation of                 .
 Use the low rank approximation to get the form of 

separated variables

such that we can reduce the general cases to the 
simplest case in which                   is constant.

 Use FFT or DFFT to compute the multilinear operator in 
the simplest case.
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Numerical Examples

Let                                               and increase the number N of data  to 
compare the time complexity. Direct computation is approximately
and the fast algorithm has almost linear order.
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Numerical Examples

Increasing the number 
N of data  to compare 
the time complexity. 
Direct computation is 
approximately          
and the fast algorithm 
has almost linear 
order.
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Numerical Examples

Increasing the number N 
of data  to compare the 
time complexity. Direct 
computation is 
approximately          and 
the fast algorithm has 
almost linear 
order.
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Numerical Examples
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