
Fast Computation of
Multilinear Operators

Haizhao Yang
Department of Mathematics

Texas Consortium for Computational Seismology
University of Texas at Austin

Advisor: Lexing Ying

Outline

Multilinear operator in harmonic analysis

Direct computation of multilinear operator

Fast algorithm for multilinear operator
• Fast Fourier transform and non uniform fast Fourier

transform
• Matrix decomposition
• Matrix approximation

Multilinear Operators
• Definition: For k fixed, we consider the k-linear operator

initially defined for as follows. We write

and set If is a bounded function
on , we define multilinear operator M by

• Here we just talk about the cases when n=1 and k=2. So the
multilinear operator is

We can get the results for higher n and k similarly.

1 1(,...,) (,...,)k kf f M f f
kf S

(1) ()(,...,) ,k nkR    () ,j nR 
(1) ()()k      ()m 

nkR

2

2 ()
1 2 1 2

ˆ ˆ(,)() (,) () () .ix

R

M f f x e m f f d d          

2 () (1) ()
1 1̂

ˆ(,...,)() () () () .
nk

ix k
k k

R

M f f x e m f f d        

Multilinear Operators
• Some examples of M:
(1) when

(2) where H is the Hilbert
transform, and

1 2 1 2(,)() () (),M f f x f x f x (,) 1.m   

1 2 1 2 1 2(,) () (),M f f f H f H f f 

1(,) [() ()].m sign sign
i

      

Matrix m corresponding to ()sign  Matrix m corresponding to ()sign  

Direct Computation
• Upon discretization of the multilinear operator, we get

where
and

• We want to compute for all j. The time
complexity of direct computation is .

• Note that we suppose and have support in [0,1]
and discretize [0,1] with N points So
and take value at the points

2 ()
1 2 1 2

ˆ ˆ(,)() (,) () (),ixM f f x e m f f  

 

    
1 , 1 , , 1, ..., ,2 2s t

N Ns t s t N       
1 , 1,..., 2 1.

2 1j
jx j N
N


  


1 2(,)()jM f f x
3()O N

1f 2f
1 1{0, ,..., }.N
N N


1̂f

2̂f { ,..., 1}.
2 2
N N

 

Fast Fourier transform

 Uniform
 Uniform
 Fourier coeff

 Fourier kernel

 Compute u(x) for each x in X

 Order of FFT is

{0,1,..., 1}x X N  

{ / 2, / 2 1,..., / 2 1}k K N N N     
{ (), K}f k k

2
(,)

xki
NG x k e




2
() ()

xki
N

k K
u x e f k





 

(log)O N N

Non-uniform fast Fourier transform

 Non-uniform and
 Non-uniform

and
 Fourier coeff
 Fourier kernel

 Compute u(x) for each x in X

 The idea of Non-uniform FFT: use
equispaced data to approximate
the non-uniform data.

 Order

[0,],X N | | ()X O N
[/ 2, / 2]K N N 

| | ().K O N

{ () , K }f k k 

2
(,)

xki
NG x k e




2
() ()

xki
N

k K
u x e f k





 

()u x 2 xki
Ne

 ()f k

We use nearest p
equispaced data of x

and k to get the
approximation, where p
is depending on error 

(log)O N N pN

Fast Algorithm for Multilinear Operator

(a) Special case for constant multiplication function
When the multiplier function is a constant, then

where we let , and

(,)m  
2 ()

1 2 1 2
ˆ ˆ(,)() () ()ixM f f x e f f  

 

  
2

1 2

2
1 2

2

ˆ ˆ() ()

ˆ ˆ() ()

()

ix

ix

ix

e f f

e f f

e T

 

 

 

 

 



  

  



 

 





 



    1 2
ˆ ˆ() () ()T f f



    

Fast Algorithm for Multilinear Operator
 Observation:

(1) is the convolution of and .

So .

(2) is the inverse Fourier transform of .

 Ideas: Use FFT to compute the Fourier transform above to reduce
the time complexity, supposing that the data is uniformly distributed.

 Time complexity for T:

Time complexity for is .

Total time complexity to compute M is .

 If the data is non-uniform, then the time complexity is

using NFFT.

()T  1̂()f  2̂ ()f 

1 2(,)()M f f x ()T 

/2
1 2 1 2

ˆ ˆˆ ˆ ˆ ˆ((2))dT f f f f   

(log) (log) () (log) (log)O N N O N N O N O N N O N N   
2

1 2(,)() ()ixM f f x e T 



 (log)O N N

(log)O N N

(log)O N N pN

Fast Algorithm for Multilinear Operator
(b) Smooth multiplicative function
 Suppose that is smooth enough, it has a h-term ε-

expansion about and which means there exists functions
and such that

 We can use the random method provided by V. Rokhlin, B. Engquist
and L.Ying to get the h-term ε-expansion of it with time complexity

for a matrix.

(,)m  
 ,

1{ ()}p p h    1{ ()}p p h   

1

| (,) () () | .
h

p p
p

m       


 

(,)m   ()p 

()p 

()O hN N N

Fast Algorithm for Multilinear Operator

 Then

 Time complexity is for uniform data and
for non-uniform data for a single matrix of size N.

(log)O hN N (log)O hN N hpN

2 ()
1 2 1 2

ˆ ˆ(,)() (,) () ()ixM f f x e m f f  

 

     
2 ()

1 2
1

2 ()
1 2

1

2
1 2

1

2

1

ˆ ˆ() () () ()

ˆ ˆ[() ()][() ()]

ˆ ˆ[() ()][() ()]

()

h
ix

p p
p

h
ix

p p
p

h
ix

p p
p

h
ix

p
p

e f f

e f f

e f f

e T

  

 

  

 

 

 

 



     

     

     



 



 















 

 

 

 

Fast Algorithm for Multilinear Operator
(c) P.W. smooth multiplicative function
 If is discontinuous along a

curve, we can use matrix division to
get the small square domains in
which the function is smooth.

 Number of squares：
• O(N) squares of size 1 by 1
• O(N/2) squares of size 2 by 2
• …
• O(1) squares of size N by N
• Total number of squares is O(N).

 Time complexity of low rank
approximation:

(,)m  

(1) (2) ... (1)
2

(log)

NO h N O h O h N

O hN N

        



Fast Algorithm for Multilinear Operator

 Time complexity for uniform data:

 For non-uniform data, it’s

2

(1log1) (2 log 2 2) ...
2 2

(1 log 1) ((log))

N NO Nh Nh O h h

O h N N h N O hN N

      

      

2((log) log)O hN N hpN N

Summary of ideas
 Division of matrices according to the discontinuous curve,

so that the function is smooth enough.
 Use the random method to get the low rank

approximation of .
 Use the low rank approximation to get the form of

separated variables

such that we can reduce the general cases to the
simplest case in which is constant.

 Use FFT or DFFT to compute the multilinear operator in
the simplest case.

(,)m 

(,)m  

1
(,) () (),

h

p p
p

m      




(,)m  

Numerical Examples

Let and increase the number N of data to
compare the time complexity. Direct computation is approximately
and the fast algorithm has almost linear order.

2 22 2 ()/(,) () Cm e        
3()O N

Numerical Examples

Increasing the number
N of data to compare
the time complexity.
Direct computation is
approximately
and the fast algorithm
has almost linear
order.

2 2

2 2

2 2 ()/

2 2 ()/

() 100
(,)

() 100

C

C

e
m

e

 

 

 
 

 

 

 

   
 

0,
.otherwise

  if
if

3()O N

Numerical Examples

Increasing the number N
of data to compare the
time complexity. Direct
computation is
approximately and
the fast algorithm has
almost linear
order.

2 2

2 2

2 2 ()/

2 2 ()/

() 100
(,)

() 100

C

C

e
m

e

 

 

 
 

 

 

 

   
 

if
if

3()O N

2 2 2() () ,
.

R
otherwise
  

Numerical Examples

19

Thank you!

