Fast Computation of Multilinear Operators

Haizhao Yang Department of Mathematics Texas Consortium for Computational Seismology University of Texas at Austin

Advisor: Lexing Ying

Outline

• Multilinear operator in harmonic analysis

- Direct computation of multilinear operator
- Fast algorithm for multilinear operator
 - Fast Fourier transform and non uniform fast Fourier transform
 - Matrix decomposition
 - Matrix approximation

Multilinear Operators

• Definition: For k fixed, we consider the k-linear operator

 $(f_1,...,f_k)\mapsto M(f_1,...,f_k)$

initially defined for $f_k \in S$ as follows. We write $\overline{\xi} = (\xi^{(1)}, ..., \xi^{(k)}) \in R^{nk}, \qquad \xi^{(j)} \in R^n,$

and set $\sigma(\overline{\xi}) = \xi^{(1)} + ... + \xi^{(k)}$. If $\overline{\xi} \mapsto m(\overline{\xi})$ is a bounded function on \mathbb{R}^{nk} , we define multilinear operator M by $M(f_1,...,f_k)(x) = \int_{\mathbb{R}^{nk}} e^{2\pi i x \cdot \sigma(\overline{\xi})} m(\overline{\xi}) \hat{f}_1(\xi^{(1)}) \cdots \hat{f}_k(\xi^{(k)}) d\overline{\xi}.$

 Here we just talk about the cases when n=1 and k=2. So the multilinear operator is

$$M(f_1, f_2)(x) = \int_{R^2} e^{2\pi i x \cdot (\eta + \lambda)} m(\eta, \lambda) \hat{f}_1(\eta) \hat{f}_2(\lambda) d\eta d\lambda.$$

We can get the results for higher n and k similarly.

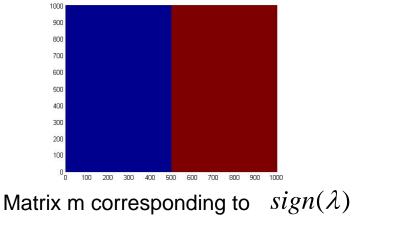
Multilinear Operators

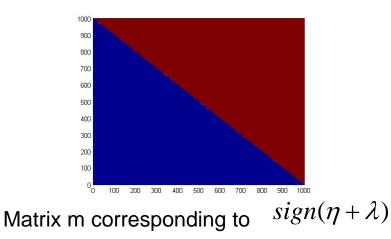
• Some examples of *M*:

(1) $M(f_1, f_2)(x) = f_1(x)f_2(x)$, when $m(\eta, \lambda) \equiv 1$.

(2) $M(f_1, f_2) = f_1 H(f_2) - H(f_1 f_2)$, where *H* is the Hilbert transform, and

$$m(\eta, \lambda) = \frac{1}{i} [sign(\lambda) - sign(\eta + \lambda)].$$





Direct Computation

• Upon discretization of the multilinear operator, we get

$$M(f_1, f_2)(x) = \sum_{\eta} \sum_{\lambda} e^{2\pi i x \cdot (\eta + \lambda)} m(\eta, \lambda) \hat{f}_1(\eta) \hat{f}_2(\lambda),$$

where $\eta_s = s - 1 - \frac{N}{2}$, $\lambda_t = t - 1 - \frac{N}{2}$, s, t = 1, ..., N, and $x_j = \frac{j-1}{2N-1}$, j = 1, ..., 2N-1.

- We want to compute $M(f_1, f_2)(x_j)$ for all *j*. The time complexity of direct computation is $O(N^3)$.
- Note that we suppose f_1 and f_2 have support in [0,1] and discretize [0,1] with N points $\{0,\frac{1}{N},...,\frac{N-1}{N}\}$. So \hat{f}_1 and \hat{f}_2 take value at the points $\{-\frac{N}{2},...,\frac{N}{2}-1\}$.

Fast Fourier transform

- Uniform $x \in X = \{0, 1, ..., N-1\}$
- Uniform $k \in K = \{-N/2, -N/2+1, ..., N/2-1\}$
- Fourier coeff $\{f(k), k \in K\}$

• Fourier kernel
$$G(x,k) = e^{-2\pi i \frac{xk}{N}}$$

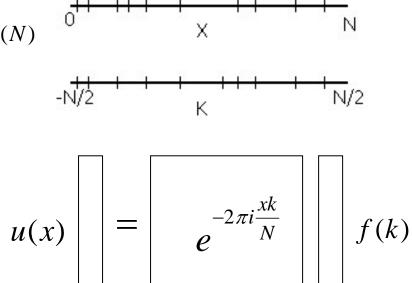
- Compute u(x) for each x in X $u(x) = \sum_{k \in K} e^{-2\pi i \frac{xk}{N}} f(k)$
- Order of FFT is $O(N \log N)$

Non-uniform fast Fourier transform

- Non-uniform $X \subset [0, N]$, and |X| = O(N)
- Non-uniform $K \subset [-N/2, N/2]$ and |K| = O(N).
- Fourier coeff $\{f(k), k \in K\}$
- Fourier kernel

$$G(x,k) = e^{-2\pi i \frac{xk}{N}}$$

- Compute u(x) for each x in X $u(x) = \sum_{k \in K} e^{-2\pi i \frac{xk}{N}} f(k)$
- The idea of Non-uniform FFT: use equispaced data to approximate the non-uniform data.
- Order $O(N \log N + pN)$



We use nearest p equispaced data of x and k to get the approximation, where p is depending on error ε

(a) Special case for constant multiplication function When the multiplier function $m(\eta, \lambda)$ is a constant, then

$$\begin{split} M(f_1, f_2)(x) &= \sum_{\eta} \sum_{\lambda} e^{2\pi i x \cdot (\eta + \lambda)} \hat{f}_1(\eta) \hat{f}_2(\lambda) \\ &= \sum_{\xi} \sum_{\eta} e^{2\pi i x \xi} \hat{f}_1(\eta) \hat{f}_2(\xi - \eta) \\ &= \sum_{\xi} e^{2\pi i x \xi} \sum_{\eta} \hat{f}_1(\eta) \hat{f}_2(\xi - \eta) \\ &= \sum_{\xi} e^{2\pi i x \xi} T(\xi) \end{split}$$

where we let $\xi = \eta + \lambda$, and $T(\xi) = \sum_{\eta} \hat{f}_1(\eta) \hat{f}_2(\xi - \eta)$

Observation:

(1) $T(\xi)$ is the convolution of $\hat{f}_1(\eta)$ and $\hat{f}_2(\lambda)$. So $T = \hat{f}_1 * \hat{f}_2 = ((2\pi)^{d/2} \hat{f}_1 \hat{f}_2)^{\vee}$.

(2) $M(f_1, f_2)(x)$ is the inverse Fourier transform of $T(\xi)$.

- Ideas: Use FFT to compute the Fourier transform above to reduce the time complexity, supposing that the data is uniformly distributed.
- Time complexity for T: $O(N \log N) + O(N \log N) + O(N \log N) + O(N \log N) = O(N \log N)$ Time complexity for $M(f_1, f_2)(x) = \sum_{\xi} e^{2\pi i x \xi} T(\xi)$ is $O(N \log N)$.

Total time complexity to compute M is $O(N \log N)$.

■ If the data is non-uniform, then the time complexity is $O(N \log N + pN)$ using NFFT.

(b) Smooth multiplicative function

Suppose that $m(\eta, \lambda)$ is smooth enough, it has a *h*-term ε expansion about η and λ , which means there exists functions $\{\alpha_p(\eta)\}_{1 \le p \le h}$ and $\{\beta_p(\lambda)\}_{1 \le p \le h}$ such that

$$|m(\eta,\lambda)-\sum_{p=1}^{h}\alpha_{p}(\eta)\beta_{p}(\lambda)|\leq \varepsilon.$$

■ We can use the random method provided by V. Rokhlin, B. Engquist and L.Ying to get the *h*-term ε -expansion of it with time complexity O(hN) for a $N \times N$ matrix.

$$\left[\begin{array}{c} m(\eta, \lambda) \end{array} \right] \approx \left[\begin{array}{c} \alpha_p(\eta) \end{array} \right] \left[\begin{array}{c} \beta_p(\lambda) \end{array} \right]$$

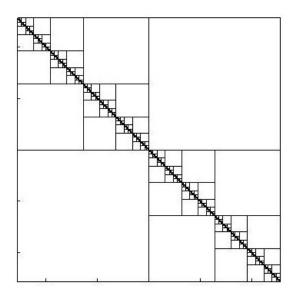
■ Then

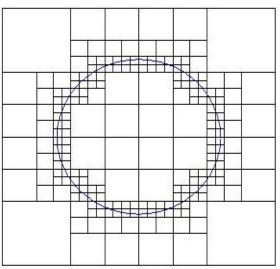
$$\begin{split} & \text{hen} \qquad M(f_1, f_2)(x) = \sum_{\eta} \sum_{\lambda} e^{2\pi i x \cdot (\eta + \lambda)} m(\eta, \lambda) \hat{f}_1(\eta) \hat{f}_2(\lambda) \\ &= \sum_{\eta} \sum_{\lambda} e^{2\pi i x \cdot (\eta + \lambda)} \sum_{p=1}^h \alpha_p(\eta) \beta_p(\lambda) \hat{f}_1(\eta) \hat{f}_2(\lambda) \\ &= \sum_{\eta} \sum_{\lambda} e^{2\pi i x \cdot (\eta + \lambda)} \sum_{p=1}^h [\alpha_p(\eta) \hat{f}_1(\eta)] [\beta_p(\lambda) \hat{f}_2(\lambda)] \\ &= \sum_{\xi} e^{2\pi i x \xi} \sum_{p=1}^h \sum_{\eta} [\alpha_p(\eta) \hat{f}_1(\eta)] [\beta_p(\lambda) \hat{f}_2(\lambda)] \\ &= \sum_{\xi} e^{2\pi i x \xi} \sum_{p=1}^h T_p(\xi) \end{split}$$

Time complexity is $O(hN \log N)$ for uniform data and $O(hN \log N + hpN)$ for non-uniform data for a single matrix of size N.

- (c) P.W. smooth multiplicative function
- If $m(\eta, \lambda)$ is discontinuous along a curve, we can use matrix division to get the small square domains in which the function is smooth.
- Number of squares:
- O(N) squares of size 1 by 1
- O(N/2) squares of size 2 by 2
- ...
- O(1) squares of size N by N
- Total number of squares is O(N).
- Time complexity of low rank approximation:

$$O(h \cdot 1 \cdot N) + O(h \cdot 2 \cdot \frac{N}{2}) + \dots + O(h \cdot N \cdot 1)$$
$$= O(hN \log N)$$





- Time complexity for uniform data: $O(Nh \cdot 1\log 1 + Nh) + O(\frac{N}{2}h \cdot 2\log 2 + \frac{N}{2}h \cdot 2) + \dots$ $+O(1 \cdot h \cdot N\log N + 1 \cdot h \cdot N) \le O(hN(\log N)^2)$
- For non-uniform data, it's

 $O(hN(\log N)^2 + hpN\log N)$

Summary of ideas

- Division of matrices according to the discontinuous curve, so that the function $m(\eta, \lambda)$ is smooth enough.
- Use the random method to get the low rank approximation of $m(\eta, \lambda)$.
- Use the low rank approximation to get the form of separated variables

$$m(\eta,\lambda) \approx \sum_{p=1}^{n} \alpha_p(\eta) \beta_p(\lambda),$$

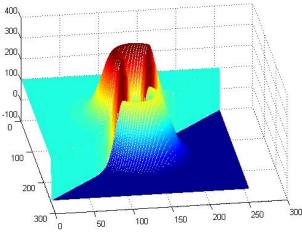
such that we can reduce the general cases to the simplest case in which $m(\eta, \lambda)$ is constant.

Use FFT or DFFT to compute the multilinear operator in the simplest case.

Continuity-Time



Let $m(\eta, \lambda) = (\eta^2 + \lambda^2)e^{-(\eta^2 + \lambda^2)/C}$ and increase the number N of data to compare the time complexity. Direct computation is approximately $O(N^3)$ and the fast algorithm has almost linear order.

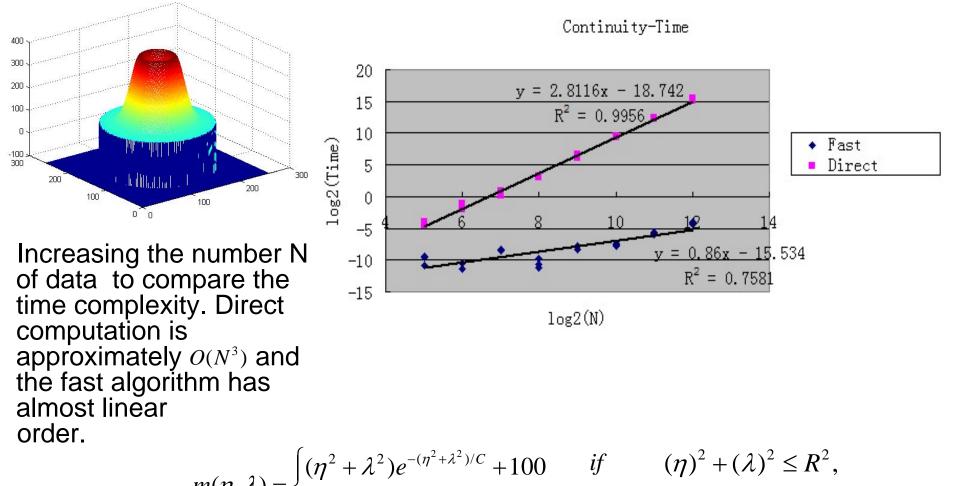


Increasing the number N of data to compare the time complexity. Direct computation is approximately $O(N^3)$ and the fast algorithm has almost linear order.

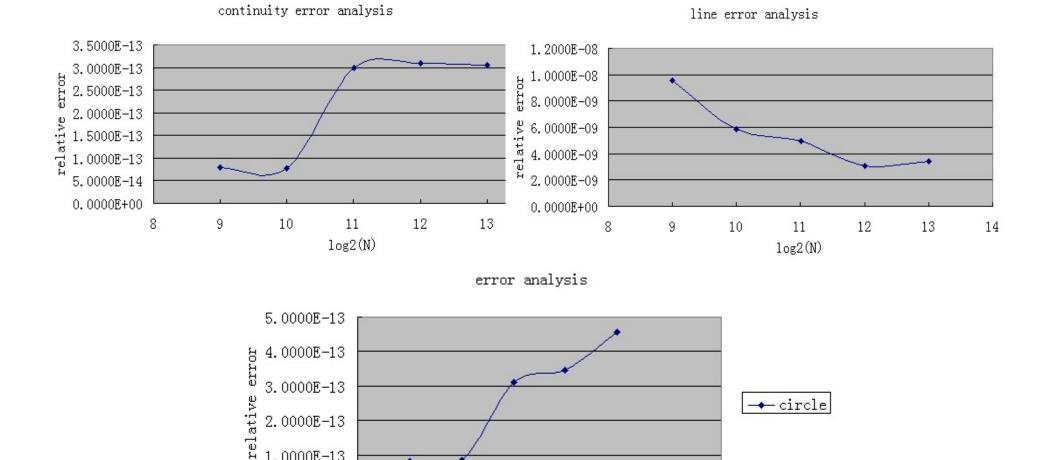
20 y = 2.8215x - 18.85615 $R^2 = 0.9954$ Fast log2(Time) 10 Direct 5 300 0 14-5 y = 0.7105x - 10.951 $R^2 = 0.85$ -10 log2(N)

Line-Time

$$m(\eta,\lambda) = \begin{cases} (\eta^2 + \lambda^2)e^{-(\eta^2 + \lambda^2)/C} + 100 & \text{if} \quad \eta + \lambda \le 0, \\ (\eta^2 + \lambda^2)e^{-(\eta^2 + \lambda^2)/C} - 100 & \text{if} & \text{otherwise.} \end{cases}$$



$$m(\eta,\lambda) = \begin{cases} (\eta' + \lambda')e^{-(\eta' + \lambda')/C} + 100 & if \\ (\eta' + \lambda')e^{-(\eta' + \lambda')/C} - 100 & if \\ (\eta' +$$



log2(N)

1.0000E-13

0.0000E+00

Thank you!