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Atomic crystal image analysis:
Crystal segmentations, crystal rotations, crystal defects, crystal
deformations.

 

 

Figure : Left: A PFC image with a zoomed-in image detailing the part maked
by a black rectangle. Right: A TEM-image in GaN. Courtesy of David M.
Tricker.



Atomic material evolution:
Crystallization, Ostwald ripening, or processes of elastic and plastic
deformation

Figure : From top to bottom: time evolution of local volume distortion and
grain boundaries.



Mathematical model

f (x) =
M∑
k=1

χΩk
(x) (α(x)S (2πNφ(x)) + c(x)) .
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Figure : Left: An example of a crystal image. Right: Windowed Fourier
transform at a local patch indicated by a rectangle.



Analysis goals:

f (x) =
M∑
k=1

χΩk
(x) (α(x)S (2πNφ(x)) + c(x)) .

I Grain segmentation Ωk and grain boundary ∂Ωk ;

I Smooth deformation φ(x) or its gradient G (x) = ∇φ(x) ∈ R2×2;

I Polar decomposition G (x) = Rθ(x)P(x) gives the angle of crystal
rotation θ(x);

I det(P(x))− 1 indicates the volume distortion of G (x);

I |λ1(x)− λ2(x)| characterizes the difference of the principal stretches
of G (x), where λ1 and λ2 are eigenvalues of G (x).
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A two-stage method

f (x) =
M∑
k=1

χΩk
(x) (α(x)S (2πNφ(x)) + c(x))

1st stage

I Given a crystal image f (x), apply the synchrosqueezed transforms to
obtain initial information;

I Estimate defect region Ωd = ∪k∂Ωk and initial deformation gradient
G0;

I Use 2D band-limited synchrosqueezed wave packet transform for
better efficiency;

2nd stage

I A variational approach to optimize G0 outside the defect region;

I Better agreeing with physical understanding of the deformation field;
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1st stage: the synchrosqueezed transform (SST)

SS+ a wave packet transform = 2D SSWPT (Y. and Ying, SIIMS 13)

SS+ a general curvelet transform = 2D SSCT (Y. and Ying, SIMS 14)

Property
Suppose Wf (ξ, x) is a phase-space transform of f with a frequency
variable ξ and a spatial variable x , then the SST Tf (ξ, x) of Wf (ξ, x) is a
sharpened phase-space representation.
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Figure : An example of a superposition of two 2D waves using 2D SSWPT.
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1st stage: the synchrosqueezed transform (SST)

Local wave vector estimation

vf (ξ, x) = Re
∇xWf (ξ, x)

2πiWf (ξ, x)
.

Synchrosqeezed energy distribution of f

Tf (v , x) =

∫
|Wf (ξ, x)|2δ(vf (ξ, x)− v)dξ.

Theorem: (Y., Lu and Ying, 14)

supp(Tf (v , x)) ≈ supp

(∑
n∈Z2

α(x)2 |̂s(n)|2δ
(
v − N∇(n · φ(x))

))
.

Intuitively,

Tf (v , x) ≈
∑
n∈Z2

α(x)2 |̂s(n)|2δ
(
v − N∇(n · φ(x))

)
.



1st stage: estimate deformation gradient G0

f (x) =
M∑
k=1

χΩk
(x) (α(x)S (2πNφ(x)) + c(x))

=
M∑
k=1

χΩk
(x)

(∑
n

α(x)Ŝ(n)e2πiNn·φ(x) + c(x)

)
1. Pre-determine reference lattice nj of interest;
2. Apply the SST to estimate Nnj · φ(x) and denote them as v est

j (x);
3. Solve

G0(x) = arg min
G

∑
j

∥∥v est
j (x)− NGnj

∥∥2
.
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Figure : Left: An example of a crystal image. Right: Windowed Fourier transform at

a local patch indicated by a rectangle.



1st stage: estimate defect region Ωd
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Figure : Left: Tf (ξ, x) for x outside the defect region. Right: Tf (ξ, x) for x
inside the defect region.

I

wn(x) =

∫
Bδ(v est

n )

Tf (v , x)dv∫
arg v∈[(n−1)π/3,nπ/3)

Tf (v , b)dv
,

where Bδ(v est
n ) denotes a small ball around v est

n .

I mass(x) :=
∑

j wj(x) will be close to 3 outside Ωd , while its value
will be much smaller than 3 inside Ωd .
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1st stage: estimate defect region Ωd
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Figure : Left: Crystal image. Middle: mass(x). Right: Identified defect region
Ωd by thresholding.



2nd stage: a variational model for an optimized G

Motivation

I G should minimize the elastic energy of the crystal system;

I curlG = b inside Ωd , where b is a Burgers vector field.

Variational model

inf
G :Ω→R2×2

∫
Ω\Ωd

|G − G0|2 + W (G )dy

s.t. curlG = b

where | · | denote the Frobenius norm and W is the elastic stored energy
density.

Neo-Hookean elastic energy

W (G ) =
µ

2
(|G |2 − 2) +

(µ
2

+
λ

2

)
(detG − 1)2

− µ(detG − 1).
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2nd stage: basic properties of the deformation gradient G

I In the grain interior, G is locally continuous and curl-free:

curlG =

(
∂x1G12 − ∂x2G11

∂x1G22 − ∂x2G21

)
=

(
∂x2∂x1φ1 − ∂x1∂x2φ1

∂x2∂x1φ2 − ∂x1∂x2φ2

)
= 0;

I In the defect region, curlG 6= 0;

I In the case of a dislocation, curlG gives the Burgers vector b;

Figure : The curve γ around the dislocation (right) can be mapped back onto a
curve γ̂ in the reference latice by ψ = φ−1 (left). γ̂ is no longer closed, the gap
being the Burgers vector (gray arrow).
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2nd stage: basic properties of the Burgers vector b

I Let B be the area covering a defect with the boundary γ, then∫
B

curlGdx =

∫
∂B

Gn⊥dx =

∫ 1

0

G (γ(t))γ̇(t)dt =

∫ 1

0

˙̂γdt = γ̂(1)−γ̂(0)

implies ∫
B

curlGdx = b.

I Recall that curlG = 0 on Ω \ Ωd .

I A discrete anolog

b̃ =

{
0 on Ω \ Ωd ;

b/|Ωd | on Ωd .
→ curlG = b̃



2nd stage: basic properties of the Burgers vector b

I Let B be the area covering a defect with the boundary γ, then∫
B

curlGdx =

∫
∂B

Gn⊥dx =

∫ 1

0

G (γ(t))γ̇(t)dt =

∫ 1

0

˙̂γdt = γ̂(1)−γ̂(0)

implies ∫
B

curlGdx = b.

I Recall that curlG = 0 on Ω \ Ωd .

I A discrete anolog

b̃ =

{
0 on Ω \ Ωd ;

b/|Ωd | on Ωd .
→ curlG = b̃



2nd stage: basic properties of the Burgers vector b

I Let B be the area covering a defect with the boundary γ, then∫
B

curlGdx =

∫
∂B

Gn⊥dx =

∫ 1

0

G (γ(t))γ̇(t)dt =

∫ 1

0

˙̂γdt = γ̂(1)−γ̂(0)

implies ∫
B

curlGdx = b.

I Recall that curlG = 0 on Ω \ Ωd .

I A discrete anolog

b̃ =

{
0 on Ω \ Ωd ;

b/|Ωd | on Ωd .
→ curlG = b̃



2nd stage: basic properties of the Burgers vector b

Figure : Identified defect region Ωd and Ωi
d . The grey scale indicates |bi |/|Ωi

d | on Ωi
d .

I After the 1st stage, we have G0 and Ωd ;

I Devide Ωd into connected components Ωi
d ;

I Estimate the Burgers vector for each defect component Ωi
d

bi =

∫
Ωi

d

curlG0dx .

I Define

b =

{
0 on Ω \ Ωd ;

bi/|Ωi
d | on Ωi

d .

I An ideal G should satisfy that curlG = b.
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2nd stage: a variational model for an optimized G

Motivation

I G should minimize the elastic energy of the crystal system;

I curlG = b inside Ωd .

Variational model

inf
G :Ω→R2×2

∫
Ω\Ωd

|G − G0|2 + W (G )dy

s.t. curlG = b

where | · | denote the Frobenius norm and W is the elastic stored energy
density.

No feasible set

I curlG = b well defined locally;

I curlG = b inconsistent globally;



2nd stage: basic properties of the deformation gradient G

Figure : 2D Bravais lattice of the hexagonal crystal.

Locally point group invariance

I Rotational symmetry of 2D Bravais lattice of the hexagonal crystal;

I Point group P ⊂ SO(2) comprises all those rotations which leave
the reference lattice invariant;

I Non-uniqueness of G to describe crystal deformation (G and RG for
R ∈ P).
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2nd stage: basic properties of the deformation gradient G

γ

G = I

G =R

Figure : Along a closed path γ traversing a sequence of crystal grains, the
deformation gradient G changes continuously from I to R 6= I . The gray shade
indicates the local crystal orientation from the identity I (white) to R (dark
gray). Dots represent point dislocations; lines indicate high angle grain
boundaries. Along the path γ all grains are connected by low angle grain
boundaries.

I Globally inconsistency of G leads to curlG 6= 0 outside the defect
region Ωd . Conflict!

I Introduce a jump set S across which G is allowed to jump by a point
group element,

G− = RG+ for some R ∈ P ,

where G− and G+ denote the value of G on either side of S .
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2nd stage: a variational model for an optimized G

Motivation
Consider point group invariance

New variational model

min
G :Ω→R2×2

∫
Ω\Ωd

|G − G0|2 + W (G )dy

s. t. curlG = b on Ω \ S , G−(G+)−1 ∈ P on S ,

Numerical solution:
Optimized by a nonlinear projected conjugate gradient method
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Numerical example 1

 

 

Figure : A noiseless PFC image; a zoomed-in image detailing the rectangle part.



Numerical example 1

(a) (b)

(c) (d)

Figure : (a)-(d): the comparison of its initial and optimized crystal
orientations, difference of principal stretches, volume distortion, and the curl of
the inverse deformation gradient.



Numerical example 2

 

 

Figure : A noisy PFC image; a zoomed-in image detailing the rectangle part.



Numerical example 2

(a) (b)

(c) (d)

Figure : (a)-(d): the comparison of its initial and optimized crystal
orientations, difference of principal stretches, volume distortion, and the curl of
the inverse deformation gradient.



Numerical example 3

Figure : A TEM-image in GaN. Courtesy of David M. Tricker



Numerical example 3

(a) (b)

(c) (d)

Figure : (a)-(d): the comparison of its initial and optimized crystal
orientations, difference of principal stretches, volume distortion, and the curl of
the inverse deformation gradient.



Numerical example 4

Figure : A photograph of a bubble raft with large disorders and blurry
boundaries. Courtesy to Barrie S. H. Royce.



Numerical example 4

(a) (b)

(c) (d)

Figure : (a)-(d): the comparison of its initial and optimized crystal
orientations, difference of principal stretches, volume distortion, and the curl of
the inverse deformation gradient.



Numerical example 5

Figure : A TEM-image of Sigma 99 tilt grain boundary in Al. Courtesy of
National Center for Electron Microscopy in Lawrence Berkeley National
Laboratory.



Numerical example 5

(a) (b)

(c) (d)

Figure : (a)-(d): the comparison of its initial and optimized crystal
orientations, difference of principal stretches, volume distortion, and the curl of
the inverse deformation gradient.



Future work

I Establish new optimaztion model for G inside the defect region Ωd ;

I Consider more complicated crystal images;

I Design fast optimization method.
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