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Atomic crystal image analysis:

Crystal segmentations, crystal rotations, crystal defects, crystal
deformations.

Figure : Left: A PFC image with a zoomed-in image detailing the part maked
by a black rectangle. Right: A TEM-image in GaN. Courtesy of David M.
Tricker.



Atomic material evolution:

deformation

Crystallization, Ostwald ripening, or processes of elastic and plastic

grain boundaries.

Figure : From top to bottom: time evolution of local volume distortion and



Mathematical model
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Figure : Left: An example of a crystal image. Right: Windowed Fourier
transform at a local patch indicated by a rectangle.
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Analysis goals:

M
F(x) = Y xa.(x) (a(x)S (2rNg(x)) + c(x)).
k=1

» Grain segmentation €, and grain boundary 0€Q;
» Smooth deformation ¢(x) or its gradient G(x) = V¢(x) € R?*2;

> Polar decomposition G(x) = Ry(x)P(x) gives the angle of crystal
rotation 6(x);

» det(P(x)) — 1 indicates the volume distortion of G(x);

> |A1(x) — A2(x)| characterizes the difference of the principal stretches
of G(x), where A1 and X, are eigenvalues of G(x).
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A two-stage method

M
F(x) =D xa(x) (a(x)S (2nNé(x)) + c(x))

1°t stage
» Given a crystal image f(x), apply the synchrosqueezed transforms to
obtain initial information;

» Estimate defect region Qy = U,0S and initial deformation gradient
Go;

» Use 2D band-limited synchrosqueezed wave packet transform for
better efficiency;

2" stage

» A variational approach to optimize Gy outside the defect region;
» Better agreeing with physical understanding of the deformation field;



1°* stage: the synchrosqueezed transform (SST)
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1°* stage: the synchrosqueezed transform (SST)

SS+  a wave packet transform = 2D SSWPT (Y. and Ying, SIIMS 13)
SS+ a general curvelet transform = 2D SSCT (Y. and Ying, SIMS 14)

Property

Suppose We(E, x) is a phase-space transform of f with a frequency
variable £ and a spatial variable x, then the SST T¢ (¢, x) of We(€, x) is a
sharpened phase-space representation.
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Figure : An example of a superposition of two 2D waves using 2D SSWPT.



1°* stage: the synchrosqueezed transform (SST)
Local wave vector estimation

vaf(gax)

ve(€,x) = R Wi (€, %)’

Synchrosqeezed energy distribution of f
Tr(vox) = [ IWh(60RS(vr(6. ) — v)de

Theorem: (Y., Lu and Ying, 14)

supp(Tr(v,x)) = supp (Z o(x)?[5(n) 26 (v — NV (n - ¢(X)))> -

neZ?

Intuitively,

Te(v,x) =~ Z a(x)?[s(n)[P5(v — NV (n - ¢(x))).

nez?



1°t stage: estimate deformation gradient G

flx) = Zxak x)$ (2mNg(x)) + ¢(x))

= Z X0, (%) (Z a(x)S(n)e?™Nm o) 4 c(x)>
k=1

n

1. Pre-determine reference lattice n; of interest;
2. Apply the SST to estimate Nn; - ¢(x) and denote them as v (x);

3. Solve )
Go(x) = arg mé:n Z | vi*(x) — NGnj|” .
j
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Figure : Left: An example of a crystal image. Right: Windowed Fourier transform at
a local patch indicated by a rectangle.



1°t stage: estimate defect region Qg
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Figure : Left: T¢(€, x) for x outside the defect region. Right: T¢(&, x) for x
inside the defect region.
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where Bs(ve™) denotes a small ball around v&st.
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Figure : Left: T¢(€, x) for x outside the defect region. Right: T¢(&, x) for x
inside the defect region.

/ Tr(v,x)dv
Bs(vs™)

wp(x) = ,
Te(v,b)dv

/argve[(nl)ﬂ'/3,n7r/3)
where Bs(ve™) denotes a small ball around v&st.
> mass(x) := > wj(x) will be close to 3 outside 4, while its value

will be much smaller than 3 inside Q4.



1°t stage: estimate defect region Qg
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Figure : Left: Crystal image. Middle: mass(x). Right: ldentified defect region
Q4 by thresholding.
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Motivation

» G should minimize the elastic energy of the crystal system;
» curl G = b inside 4, where b is a Burgers vector field.

Variational model

inf / |G — Go|® + W(G)dy
O\ Qy

G:Q—R2x2
st.curlG =b
where | - | denote the Frobenius norm and W is the elastic stored energy

density.

Neo-Hookean elastic energy

W(G) = g(|G|2 -2)+ (g + %)(det G —1)?
— p(det G —1).
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279 stage: basic properties of the deformation gradient

» In the grain interior, G is locally continuous and curl-free:

_ ax1 G — axz Gu1 _ 8><2 axl (bl - axl aXZ (bl =U;
curl G = <8Xl Gor — Oy, (;21) - (8X25X1¢2 — 0x0x02) 0;

> In the defect region, curl G # 0;

» In the case of a dislocation, curl G gives the Burgers vector b;

Figure : The curve v around the dislocation (right) can be mapped back onto a
curve 4 in the reference latice by 1) = ¢! (left). 4 is no longer closed, the gap
being the Burgers vector (gray arrow).



279 stage: basic properties of the Burgers vector b
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279 stage: basic properties of the Burgers vector b

> Let B be the area covering a defect with the boundary ~, then

/Bcurl Gdx = . Gnidx:/o G(fy(t))ﬁ(t)dt:/o Adt = 4(1)—4(0)

implies
/ curl Gdx = b.
B

» Recall that curl G =0 on Q\ Q4.
» A discrete anolog

P 0 on Q\ Qq;
| b/14| on Q4.

— curlG=5h



279 stage: basic properties of the Burgers vector b
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Figure : Identified defect region Q4 and Q. The grey scale indicates |b;|/|Q}] on Q.

» After the 15t stage, we have Gy and Qy;
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» After the 15t stage, we have Gy and Qy;
» Devide Qg into connected components Qi



279 stage: basic properties of the Burgers vector b

s g
=}
r‘? QP

0

Figure : Identified defect region Q4 and Q. The grey scale indicates |b;|/|Q}] on Q.

» After the 15t stage, we have Gy and Qy;
» Devide Qg into connected components Qi
» Estimate the Burgers vector for each defect component Q/,

b; :/ curl Godx.
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Figure : Identified defect region Q4 and Q. The grey scale indicates |b;|/|Q}] on Q.
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After the 15t stage, we have Gy and Qg;
Devide 4 into connected components Qi
Estimate the Burgers vector for each defect component
b; :/ curl Godx.
Q
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b 0 on Q\ Qq;
| bi/IQ| on Q.
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Figure : Identified defect region Q4 and Q. The grey scale indicates |b;|/|Q}] on Q.
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After the 15t stage, we have Gy and Qg;
Devide Qg into connected components /,;
Estimate the Burgers vector for each defect component

b; :/ curl Godx.
Q

i
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> Define
b 0 on Q\ Qq;
| bi/IQ| on Q.
» An ideal G should satisfy that curl G = b.



279 stage: a variational model for an optimized G

Motivation

» G should minimize the elastic energy of the crystal system;
» curl G = b inside Q4.

Variational model

inf / |G — Go|® + W(G)dy
Q\Qqy

G:Q—R2x2
st.curlG =b
where | - | denote the Frobenius norm and W is the elastic stored energy

density.

No feasible set

» curl G = b well defined locally;

» curl G = b inconsistent globally;
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Figure : 2D Bravais lattice of the hexagonal crystal.

Locally point group invariance

> Rotational symmetry of 2D Bravais lattice of the hexagonal crystal;
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Figure : 2D Bravais lattice of the hexagonal crystal.
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» Point group P C SO(2) comprises all those rotations which leave
the reference lattice invariant;
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Figure : 2D Bravais lattice of the hexagonal crystal.

Locally point group invariance

> Rotational symmetry of 2D Bravais lattice of the hexagonal crystal;
» Point group P C SO(2) comprises all those rotations which leave
the reference lattice invariant;

» Non-uniqueness of G to describe crystal deformation (G and RG for
R e P).



279 stage: basic properties of the deformation gradient G

Figure : Along a closed path ~ traversing a sequence of crystal grains, the
deformation gradient G changes continuously from / to R # |. The gray shade
indicates the local crystal orientation from the identity / (white) to R (dark
gray). Dots represent point dislocations; lines indicate high angle grain

boundaries. Along the path ~ all grains are connected by low angle grain
boundaries.



279 stage: basic properties of the deformation gradient G

Figure : Along a closed path v traversing a sequence of crystal grains, the
deformation gradient G changes continuously from / to R # |. The gray shade
indicates the local crystal orientation from the identity / (white) to R (dark
gray). Dots represent point dislocations; lines indicate high angle grain

boundaries. Along the path + all grains are connected by low angle grain
boundaries.

> Globally inconsistency of G leads to curl G # 0 outside the defect
region Q4. Conflict!



279 stage: basic properties of the deformation gradient G

Figure : Along a closed path v traversing a sequence of crystal grains, the
deformation gradient G changes continuously from / to R # |. The gray shade
indicates the local crystal orientation from the identity / (white) to R (dark
gray). Dots represent point dislocations; lines indicate high angle grain
boundaries. Along the path + all grains are connected by low angle grain
boundaries.

» Globally inconsistency of G leads to curl G # 0 outside the defect
region Q4. Conflict!
> Introduce a jump set S across which G is allowed to jump by a point
group element,
G~ = RG™ for some R e P,

where G~ and G denote the value of G on either.side of S.
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279 stage: a variational model for an optimized G

Motivation
Consider point group invariance

New variational model

G:Q—R2x2

min / |G — Go|* + W(G)dy
0\Qy

s.t. curlG=bonQ\S, G (G tePonS,

Numerical solution:
Optimized by a nonlinear projected conjugate gradient method



Numerical example 1

Figure : A noiseless PFC image; a zoomed-in image detailing the rectangle part.



Numerical example 1

(d)

Figure : (a)-(d): the comparison of its initial and optimized crystal
orientations, difference of principal stretches, volume distortion, and the curl of
the inverse deformation gradient.



Numerical example 2

Figure : A noisy PFC image; a zoomed-in image detailing the rectangle par
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Numerical example 2

(d)

Figure : (a)-(d): the comparison of its initial and optimized crystal
orientations, difference of principal stretches, volume distortion, and the curl of
the inverse deformation gradient.



Numerical example 3

Figure : A TEM-image in GaN. Courtesy of David M. Tricker
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Figure : (a)-(d): the comparison of its initial and optimized crystal
orientations, difference of principal stretches, volume distortion, and the curl of
the inverse deformation gradient.




Numerical example 4

Figure : A photograph of a bubble raft with large disorders and blurry
boundaries. Courtesy to Barrie S. H. Royce.



Numerical example 4

(c)

Figure : (a)-(d): the comparison of its initial and optimized crystal
orientations, difference of principal stretches, volume distortion, and the curl of
the inverse deformation gradient.



Numerical example 5

Figure : A TEM-image of Sigma 99 tilt grain boundary in Al. Courtesy of
National Center for Electron Microscopy in Lawrence Berkeley National
Laboratory.



Numerical example 5

© : (d)

Figure : (a)-(d): the comparison of its initial and optimized crystal
orientations, difference of principal stretches, volume distortion, and the curl of
the inverse deformation gradient.
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Future work

» Establish new optimaztion model for G inside the defect region Qy;
» Consider more complicated crystal images;

» Design fast optimization method.
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