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Medical study (Y., ACHA, 14)

» A superposition of two ECG signals.

f(t) = 0&1(t)51(27‘('¢1(t)) + 042(1')52(27T¢2(t)).

> Spike wave shape functions s;(t) and s(t).
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Figure : Complicated wave shape
functions. Figure : Good decomposition.



Geophysics (Y. and Ying, SIIMS 13, SIMA 14)

> A superposition of several wave fields.

» Nonlinear components, bounded supports.

Figure : One target component with structure noise and Gaussian random
noise. Courtesy of Fomel and Hu for providing data.



Materials science (Y., Lu and Ying, preprint)
Atomic crystal analysis
» Observation: an assemblage of wave-like components;

» Goal: Crystal segmentation, crystal rotations, crystal defects, crystal
deformations.




Art forensics (Y., Lu, Brown, Daubechies, Ying, preprint)
Painting canvas analysis

» Observation: a superposition of wave-like components;

» Goal: count threads and estimate texture deformation.
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Figure : Top: a X-ray image of canvas. Left: horizontal thread count. Right:

horizontal thread angle.



1D mode decomposition

Known: A superposition of wave-like components

K K
f(t) = Z fk(t) = Zak(t)ezﬂﬂvk(bk(t).
k=1 k=1

Unknown: Number K, components f,(t), smooth instantaneous
amplitudes ay(t), smooth instantaneous frequencies Ny (t).
Existing methods:

» Empirical mode decomposition methods (Huang et al. 98, 09);

» Synchrosqueezed wavelet transform (Daubechies et al. 09, 11);
Synchrosqueezed wave packet transform (Y. 14);

» Data-driven time-frequency analysis (Hou et al. 11, 12, 13);

» Regularized nonstationary autoregression (Fomel 13);



1D wave packets

Given a mother wave packet w(t) and a scaling parameter s € (1/2,1),
the family of wave packets {w.p(t) : @ > 1, b € R} is defined as

Wab(t) _ as/2w(as(t _ b))eZ'n'i(tfb)a7
or equivalently, in the Fourier domain as

Wap(€) = a=*/2e P (a5 (€ — a)).

1D wave packet transform
The 1D wave packet transform of a function f(t) is a function

Wre(a, b) = (Wap, ) = / wap(t)f(t)dt
fora>1,beR.



A simple example
A plane wave with an instantaneous frequency N:

f(t) — eQﬂ'iNt.

Its wave packet transform:
We(a, b) = / e2wiNtaS/2me—2ﬂ—i(t—b)a dt
R

_ a—s/2e2wiNbW(a—s(N _ a))
The oscillation of W¢(a, b) in b reveals N:
OpWe(a,b)  a=5/?0,e*™ Ny (a=5(N — a))

= . =N.
2miWe(a, b)  2mia—s/2e2miNby (a—s(N — a))




Definition: Instantaneous frequency estimate

o 6[, Wf(a, b)

wr@b) = 5 e ab)

for We(a, b) # 0.

Definition: Synchrosqueezed wave packet transform (SSWPT)

7?(w7b):/R|Wf(a7 B)PS(Rewr (3, b) — w) da.

Comparison of supports
A plane wave f(t) = e2™Nt  for a fixed b,

suppWe(a, b) =~ (N — N°, N + N*);
supp7r(w, b) concentrates at w = N.



SS for sharpened representation
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Figure : The supports of the 1D wave packet transform and 1D SSWPT of a
synthetic benchmark signal.



Theory of 1D SSWPT

Theorem: (Y. 14 ACHA)
If

x

f(t) = Z fi(t) = Zak(t)e2”i’\’k¢k(t)

k=1
and f(t) are well-separated, then
» T¢(a, b) has well-separated supports Z, concentrating (N} (b), b);
> fi(t) can be accurately recovered by applying an inverse transform
on Iz (a, b)Tr(a, b).
where Zz, (a, b) is an indication function.



Robustness properties of 1D SSWPT

» Bounded perturbation;
» Gaussian random noise (colored);

» Possible compactly supported in space.

Theorem: (Y. and Ying, 14, preprint)

> A non-linear wave f(x) = a(x)e?™N¢() ¢(x) = O(1);
A zero mean Gaussian random noise e with covariance €] for some
q>0;
A wave packet w,p(x) compactly supported in the Fourier domain;
» Main results: if s(x) = f(x) + e, then after thresholding, with a
probability at least

(1 _ efO(NHSeﬁ)) (1 _ efouv**se;q)) :

- 3[, Ws(a, b)

ws(3:6) = 3 (ab)

~ N¢'(b)



Properties of 1D SSWPT*!?2

When s = 1, wave packets become wavelets;
When s = 1/2, wave packets become wave atoms;
Larger s, more accurate to estimate instantaneous frequencies;

Smaller s, more robust to estimate instananeous frequencies;

vV v.v. vy

Smaller s, better resolution to distinguish wave-like components in
the high frequency domain.

» Smaller s, better for the general mode decomposition problem:

F(E) =Y _flt) = > au(t)sc(2rNeg(t))
= Zak(t)zg;(n)ezﬂ‘”\lkngf)k(t)

Ly ACHA, 14.
2Y. and Ying, arXiv:1410.5939, 14.



Difference of wavelets and wave packets
The size of the essential support of w,,(¢) is O(2a%).
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Figure : In the frequency domain: s = 1, wavelet tiling (blue); Sampling bump
functions (black); Fourier transforms of plane waves (red).
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Figure : s < 1, wave packets.



Difference of SS wavelets and SS wave packets

1-1/2, SS wave atom t=1/2+1/8 1-1, S wavelet
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Figure : Seismic trace benchmark signal: s = 0.5; s = 0.625; s = 1. Top:
whole domain. Bottom: high frequency part.



Robustness properties of 1D SSTs

Smaller scaling parameter s in the SSWPT, better robustness.
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Figure : Noisy synthetic benchmark signal. From left to right: s = 0.625,
s =0.75, and s = 0.875.



Robustness properties of 1D SSTs

Higher redundancy in the time-frequency transform, better robustness.
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Figure
s = 0.875.

: 16 times redundancy. From left to right: s = 0.625, s = 0.75, and



Volcanic signal tremor
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Figure : From left to right: s =1 (SSWT); s = 0.75; s = 0.625. Top:
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2D Synchrosqueezed (SS) transforms

2D wave packets +SS = 2D SS wave packet (SSWPT)
2D general curvelets 2D SS curvelet (SSCT)

2D wave packets
2D wave packets {w,p(x) : a, b € R?,|a| > 1} are defined as

Wap(x) = |a*w(|al*(x — b))e*" =),
or equivalently in Fourier domain

wab(€) = |al 7T * (a7 (€ - a)).



Notations:
1. The scaling matrix
at 0

A, = ( _ ) |

2. The rotation angle 6 and rotation matrix
cosf —sind
Ro = ( sinf  cosd )

3. A unit vector eg = (cosf,sinf) T with a rotation angle 6.

2D general curvelets

2D general curvelets {w,gp(x),a € [1,00),0 € [0,27), b € R?} are
defined as

Wagh(x) = a7 e2mialx—b)eo w(AsR,  (x — b)),
or equivalently in Fourier domain

Wagb(§) = A(Aa_lRe_l(f — 3. 69))6_2””"53_%.



2D wave packets and 2D general curvelets
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Figure : Essential support of the Fourier transform of: continuous wave
packets; continuous general curvelets; a discrete general curvelet with
parameters (s, t), roughly of size a° x a'.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1



Theory for 2D SS wave packet transforms

Theroem 1: (Y. and Ying SIIMS 13)

A non-linear wave f(x) = a(x)e?™*(X) a wave packet w,,(x), define a
transform:

We(a, b) = (s(x), wap(x)) = /S(X)Wab(x) dx.

o Vbe(a, b) N
o.)f(a, b) - 27Tin(a, b) ~ Vd)(b)

Theorem 2: (Y. and Ying preprint 14)

A zero mean Gaussian random noise e with covariance €] for some g > 0.
If s(x) = f(x) + e, then after thresholding, with a probability at least

(1 _ e~ 0N e )) (1 _ efO(N—ZSe;q)) (1 _ efouv—ze;")) 7

VbW(a b) NV¢(b)

ws(a,b) = 27iWs(a, b)



Theory for 2D SS curvelet transforms

Theroem 1: (Y. and Ying SIMA 14)

A non-linear wave f(x) = a(x)e?™*(X) a general curvelet w,g,(x), define
a transform:

We(a, 0, b) = (s(x), wagp(x)) = /S(X)Wagb(X) dx.

Vb Wf(a, 97 b)

wi(2.0.0) = 5 e (2.0.b)

~ Vo(b)

Theroem 2: (Y. and Ying preprint 14)

A zero mean Gaussian random noise e with covariance €] for some g > 0.
If s(x) = f(x) + e, then after thresholding, with a probability at least

(1 _ o0 q)) (1 _ efO(N—ZSe;‘*)) (1 _ efO(N‘zefq)) ,

Vbe(a 9 b)
wi(2,0,b) = 2wiWe(a, 0, b) ~ Ve(b)



Synchrosqueezing for sharpened representation:

Ti(w, b) = / Wi (a, b)3(wr(a, b) — w) da.
{a:Wr(a,b)#0}
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Figure : An example of a superposition of two 2D waves using 2D SSWPT.



Figure : Tr(w, b) of the same example in the last figure. Left: noiseless.
Middle: SNR= 3. Right: SNR= —3.



components.

Difference of 2D SSWPT and 2D SSCT

Usually s = t is better than s < t, except for the banded wave-like

Figure : Left: A superposition of two banded waves; Middle: 2D S
Right: 2D SSCT.
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SynLab: a MATLAB toolbox

» Available at http://web.stanford.edu/~haizhao/Codes.htm.
» 1D SS Wave Packet Transform 3
» 2D SS Wave Packet/Curvelet Transform #°

Applications:

» Geophysics: seismic wave field separation and ground-roll removal.
> Atomic crystal image analysis.
» Art forensic.

3Synchrosqueezed Wave Packet Transforms and Diffeomorphism Based Spectral
Analysis for 1D General Mode Decompositions, Applied and Computational Harmonic
Analysis, 2014.

4Synchrosqueezed Wave Packet Transform for 2D Mode Decomposition,SIAM
Journal on Imaging Science, 2013.

5Synchrosqueezed Curvelet Transform for 2D Mode Decomposition, SIAM Journal
on Mathematical Analysis, 2014.



	Introduction
	1D mode decomposition

